Goto

Collaborating Authors

 Feng, Qian


LensDFF: Language-enhanced Sparse Feature Distillation for Efficient Few-Shot Dexterous Manipulation

arXiv.org Artificial Intelligence

Learning dexterous manipulation from few-shot demonstrations is a significant yet challenging problem for advanced, human-like robotic systems. Dense distilled feature fields have addressed this challenge by distilling rich semantic features from 2D visual foundation models into the 3D domain. However, their reliance on neural rendering models such as Neural Radiance Fields (NeRF) or Gaussian Splatting results in high computational costs. In contrast, previous approaches based on sparse feature fields either suffer from inefficiencies due to multi-view dependencies and extensive training or lack sufficient grasp dexterity. To overcome these limitations, we propose Language-ENhanced Sparse Distilled Feature Field (LensDFF), which efficiently distills view-consistent 2D features onto 3D points using our novel language-enhanced feature fusion strategy, thereby enabling single-view few-shot generalization. Based on LensDFF, we further introduce a few-shot dexterous manipulation framework that integrates grasp primitives into the demonstrations to generate stable and highly dexterous grasps. Moreover, we present a real2sim grasp evaluation pipeline for efficient grasp assessment and hyperparameter tuning. Through extensive simulation experiments based on the real2sim pipeline and real-world experiments, our approach achieves competitive grasping performance, outperforming state-of-the-art approaches.


CE-SDWV: Effective and Efficient Concept Erasure for Text-to-Image Diffusion Models via a Semantic-Driven Word Vocabulary

arXiv.org Artificial Intelligence

Large-scale text-to-image (T2I) diffusion models have achieved remarkable generative performance about various concepts. With the limitation of privacy and safety in practice, the generative capability concerning NSFW (Not Safe For Work) concepts is undesirable, e.g., producing sexually explicit photos, and licensed images. The concept erasure task for T2I diffusion models has attracted considerable attention and requires an effective and efficient method. To achieve this goal, we propose a CE-SDWV framework, which removes the target concepts (e.g., NSFW concepts) of T2I diffusion models in the text semantic space by only adjusting the text condition tokens and does not need to re-train the original T2I diffusion model's weights. Specifically, our framework first builds a target concept-related word vocabulary to enhance the representation of the target concepts within the text semantic space, and then utilizes an adaptive semantic component suppression strategy to ablate the target concept-related semantic information in the text condition tokens. To further adapt the above text condition tokens to the original image semantic space, we propose an end-to-end gradient-orthogonal token optimization strategy. Extensive experiments on I2P and UnlearnCanvas benchmarks demonstrate the effectiveness and efficiency of our method.


Language-Guided Object-Centric Diffusion Policy for Collision-Aware Robotic Manipulation

arXiv.org Artificial Intelligence

Learning from demonstrations faces challenges in generalizing beyond the training data and is fragile even to slight visual variations. To tackle this problem, we introduce Lan-o3dp, a language guided object centric diffusion policy that takes 3d representation of task relevant objects as conditional input and can be guided by cost function for safety constraints at inference time. Lan-o3dp enables strong generalization in various aspects, such as background changes, visual ambiguity and can avoid novel obstacles that are unseen during the demonstration process. Specifically, We first train a diffusion policy conditioned on point clouds of target objects and then harness a large language model to decompose the user instruction into task related units consisting of target objects and obstacles, which can be used as visual observation for the policy network or converted to a cost function, guiding the generation of trajectory towards collision free region at test time. Our proposed method shows training efficiency and higher success rates compared with the baselines in simulation experiments. In real world experiments, our method exhibits strong generalization performance towards unseen instances, cluttered scenes, scenes of multiple similar objects and demonstrates training free capability of obstacle avoidance.


Evaluating Uncertainty-based Failure Detection for Closed-Loop LLM Planners

arXiv.org Artificial Intelligence

Recently, Large Language Models (LLMs) have witnessed remarkable performance as zero-shot task planners for robotic manipulation tasks. However, the open-loop nature of previous works makes LLM-based planning error-prone and fragile. On the other hand, failure detection approaches for closed-loop planning are often limited by task-specific heuristics or following an unrealistic assumption that the prediction is trustworthy all the time. As a general-purpose reasoning machine, LLMs or Multimodal Large Language Models (MLLMs) are promising for detecting failures. However, However, the appropriateness of the aforementioned assumption diminishes due to the notorious hullucination problem. In this work, we attempt to mitigate these issues by introducing a framework for closed-loop LLM-based planning called KnowLoop, backed by an uncertainty-based MLLMs failure detector, which is agnostic to any used MLLMs or LLMs. Specifically, we evaluate three different ways for quantifying the uncertainty of MLLMs, namely token probability, entropy, and self-explained confidence as primary metrics based on three carefully designed representative prompting strategies. With a self-collected dataset including various manipulation tasks and an LLM-based robot system, our experiments demonstrate that token probability and entropy are more reflective compared to self-explained confidence. By setting an appropriate threshold to filter out uncertain predictions and seek human help actively, the accuracy of failure detection can be significantly enhanced. This improvement boosts the effectiveness of closed-loop planning and the overall success rate of tasks.


Dynamic Grasping of Unknown Objects with a Multi-Fingered Hand

arXiv.org Artificial Intelligence

An important prerequisite for autonomous robots is their ability to reliably grasp a wide variety of objects. Most state-of-the-art systems employ specialized or simple end-effectors, such as two-jaw grippers, which limit the range of objects to manipulate. Additionally, they conventionally require a structured and fully predictable environment while the vast majority of our world is complex, unstructured, and dynamic. This paper presents a novel approach to integrate a five-finger hand with visual servo control to enable dynamic grasping and compensate for external disturbances. The multi-fingered end-effector enhances the variety of possible grasps and manipulable objects. It is controlled by a deep learning based generative grasping network. The required virtual model of the unknown target object is iteratively completed by processing visual sensor data. Our experiments on real hardware confirm the system's capability to reliably grasp unknown dynamic target objects. To the best of our knowledge, this is the first method to achieve dynamic multi-fingered grasping for unknown objects. A video of the experiments is available at https://youtu.be/5Ou6V_QMrNY.