Feng, Pu
Hierarchical Consensus-Based Multi-Agent Reinforcement Learning for Multi-Robot Cooperation Tasks
Feng, Pu, Liang, Junkang, Wang, Size, Yu, Xin, Shi, Rongye, Wu, Wenjun
In multi-agent reinforcement learning (MARL), the Centralized Training with Decentralized Execution (CTDE) framework is pivotal but struggles due to a gap: global state guidance in training versus reliance on local observations in execution, lacking global signals. Inspired by human societal consensus mechanisms, we introduce the Hierarchical Consensus-based Multi-Agent Reinforcement Learning (HC-MARL) framework to address this limitation. HC-MARL employs contrastive learning to foster a global consensus among agents, enabling cooperative behavior without direct communication. This approach enables agents to form a global consensus from local observations, using it as an additional piece of information to guide collaborative actions during execution. To cater to the dynamic requirements of various tasks, consensus is divided into multiple layers, encompassing both short-term and long-term considerations. Short-term observations prompt the creation of an immediate, low-layer consensus, while long-term observations contribute to the formation of a strategic, high-layer consensus. This process is further refined through an adaptive attention mechanism that dynamically adjusts the influence of each consensus layer. This mechanism optimizes the balance between immediate reactions and strategic planning, tailoring it to the specific demands of the task at hand. Extensive experiments and real-world applications in multi-robot systems showcase our framework's superior performance, marking significant advancements over baselines.
Leveraging Partial Symmetry for Multi-Agent Reinforcement Learning
Yu, Xin, Shi, Rongye, Feng, Pu, Tian, Yongkai, Li, Simin, Liao, Shuhao, Wu, Wenjun
Incorporating symmetry as an inductive bias into multi-agent reinforcement learning (MARL) has led to improvements in generalization, data efficiency, and physical consistency. While prior research has succeeded in using perfect symmetry prior, the realm of partial symmetry in the multi-agent domain remains unexplored. To fill in this gap, we introduce the partially symmetric Markov game, a new subclass of the Markov game. We then theoretically show that the performance error introduced by utilizing symmetry in MARL is bounded, implying that the symmetry prior can still be useful in MARL even in partial symmetry situations. Motivated by this insight, we propose the Partial Symmetry Exploitation (PSE) framework that is able to adaptively incorporate symmetry prior in MARL under different symmetry-breaking conditions. Specifically, by adaptively adjusting the exploitation of symmetry, our framework is able to achieve superior sample efficiency and overall performance of MARL algorithms. Extensive experiments are conducted to demonstrate the superior performance of the proposed framework over baselines. Finally, we implement the proposed framework in real-world multi-robot testbed to show its superiority.
MIR2: Towards Provably Robust Multi-Agent Reinforcement Learning by Mutual Information Regularization
Li, Simin, Xu, Ruixiao, Guo, Jun, Feng, Pu, Wang, Jiakai, Liu, Aishan, Yang, Yaodong, Liu, Xianglong, Lv, Weifeng
Robust multi-agent reinforcement learning (MARL) necessitates resilience to uncertain or worst-case actions by unknown allies. Existing max-min optimization techniques in robust MARL seek to enhance resilience by training agents against worst-case adversaries, but this becomes intractable as the number of agents grows, leading to exponentially increasing worst-case scenarios. Attempts to simplify this complexity often yield overly pessimistic policies, inadequate robustness across scenarios and high computational demands. Unlike these approaches, humans naturally learn adaptive and resilient behaviors without the necessity of preparing for every conceivable worst-case scenario. Motivated by this, we propose MIR2, which trains policy in routine scenarios and minimize Mutual Information as Robust Regularization. Theoretically, we frame robustness as an inference problem and prove that minimizing mutual information between histories and actions implicitly maximizes a lower bound on robustness under certain assumptions. Further analysis reveals that our proposed approach prevents agents from overreacting to others through an information bottleneck and aligns the policy with a robust action prior. Empirically, our MIR2 displays even greater resilience against worst-case adversaries than max-min optimization in StarCraft II, Multi-agent Mujoco and rendezvous. Our superiority is consistent when deployed in challenging real-world robot swarm control scenario. See code and demo videos in Supplementary Materials.
ESP: Exploiting Symmetry Prior for Multi-Agent Reinforcement Learning
Yu, Xin, Shi, Rongye, Feng, Pu, Tian, Yongkai, Luo, Jie, Wu, Wenjun
Multi-agent reinforcement learning (MARL) has achieved promising results in recent years. However, most existing reinforcement learning methods require a large amount of data for model training. In addition, data-efficient reinforcement learning requires the construction of strong inductive biases, which are ignored in the current MARL approaches. Inspired by the symmetry phenomenon in multi-agent systems, this paper proposes a framework for exploiting prior knowledge by integrating data augmentation and a well-designed consistency loss into the existing MARL methods. In addition, the proposed framework is model-agnostic and can be applied to most of the current MARL algorithms. Experimental tests on multiple challenging tasks demonstrate the effectiveness of the proposed framework. Moreover, the proposed framework is applied to a physical multi-robot testbed to show its superiority.
Attacking Cooperative Multi-Agent Reinforcement Learning by Adversarial Minority Influence
Li, Simin, Guo, Jun, Xiu, Jingqiao, Feng, Pu, Yu, Xin, Liu, Aishan, Wu, Wenjun, Liu, Xianglong
This study probes the vulnerabilities of cooperative multi-agent reinforcement learning (c-MARL) under adversarial attacks, a critical determinant of c-MARL's worst-case performance prior to real-world implementation. Current observation-based attacks, constrained by white-box assumptions, overlook c-MARL's complex multi-agent interactions and cooperative objectives, resulting in impractical and limited attack capabilities. To address these shortcomes, we propose Adversarial Minority Influence (AMI), a practical and strong for c-MARL. AMI is a practical black-box attack and can be launched without knowing victim parameters. AMI is also strong by considering the complex multi-agent interaction and the cooperative goal of agents, enabling a single adversarial agent to unilaterally misleads majority victims to form targeted worst-case cooperation. This mirrors minority influence phenomena in social psychology. To achieve maximum deviation in victim policies under complex agent-wise interactions, our unilateral attack aims to characterize and maximize the impact of the adversary on the victims. This is achieved by adapting a unilateral agent-wise relation metric derived from mutual information, thereby mitigating the adverse effects of victim influence on the adversary. To lead the victims into a jointly detrimental scenario, our targeted attack deceives victims into a long-term, cooperatively harmful situation by guiding each victim towards a specific target, determined through a trial-and-error process executed by a reinforcement learning agent. Through AMI, we achieve the first successful attack against real-world robot swarms and effectively fool agents in simulated environments into collectively worst-case scenarios, including Starcraft II and Multi-agent Mujoco. The source code and demonstrations can be found at: https://github.com/DIG-Beihang/AMI.