Feng, Kaituo
AV-Odyssey Bench: Can Your Multimodal LLMs Really Understand Audio-Visual Information?
Gong, Kaixiong, Feng, Kaituo, Li, Bohao, Wang, Yibing, Cheng, Mofan, Yang, Shijia, Han, Jiaming, Wang, Benyou, Bai, Yutong, Yang, Zhuoran, Yue, Xiangyu
Recently, multimodal large language models (MLLMs), such as GPT-4o, Gemini 1.5 Pro, and Reka Core, have expanded their capabilities to include vision and audio modalities. While these models demonstrate impressive performance across a wide range of audio-visual applications, our proposed DeafTest reveals that MLLMs often struggle with simple tasks humans find trivial: 1) determining which of two sounds is louder, and 2) determining which of two sounds has a higher pitch. Motivated by these observations, we introduce AV-Odyssey Bench, a comprehensive audio-visual benchmark designed to assess whether those MLLMs can truly understand the audio-visual information. This benchmark encompasses 4,555 carefully crafted problems, each incorporating text, visual, and audio components. To successfully infer answers, models must effectively leverage clues from both visual and audio inputs. To ensure precise and objective evaluation of MLLM responses, we have structured the questions as multiple-choice, eliminating the need for human evaluation or LLM-assisted assessment. We benchmark a series of closed-source and open-source models and summarize the observations. By revealing the limitations of current models, we aim to provide useful insight for future dataset collection and model development.
Fira: Can We Achieve Full-rank Training of LLMs Under Low-rank Constraint?
Chen, Xi, Feng, Kaituo, Li, Changsheng, Lai, Xunhao, Yue, Xiangyu, Yuan, Ye, Wang, Guoren
Low-rank training has emerged as a promising approach for reducing memory usage in training Large Language Models (LLMs). Previous methods either rely on decomposing weight matrices (e.g., LoRA), or seek to decompose gradient matrices (e.g., GaLore) to ensure reduced memory consumption. However, both of them constrain the training in a low-rank subspace, thus inevitably leading to sub-optimal performance. This raises a question: whether it is possible to consistently preserve the low-rank constraint for memory efficiency, while achieving full-rank training (i.e., training with full-rank gradients of full-rank weights) to avoid inferior outcomes? In this paper, we propose a new plug-and-play training framework for LLMs called Fira, as the first attempt to achieve this goal. First, we observe an interesting phenomenon during LLM training: the scaling impact of adaptive optimizers (e.g., Adam) on the gradient norm remains similar from low-rank to full-rank training. Based on this observation, we propose a norm-based scaling method, which utilizes the scaling impact of low-rank optimizers as substitutes for that of original full-rank optimizers to enable full-rank training. In this way, we can preserve the low-rank constraint in the optimizer while achieving full-rank training for better performance. Moreover, we find that there are sudden gradient rises during the optimization process, potentially causing loss spikes. To address this, we further put forward a norm-growth limiter to smooth the gradient via regulating the relative increase of gradient norms. Extensive experiments on the pre-training and fine-tuning of LLMs show that Fira outperforms both LoRA and GaLore, achieving performance that is comparable to or even better than full-rank training.
Keypoint-based Progressive Chain-of-Thought Distillation for LLMs
Feng, Kaituo, Li, Changsheng, Zhang, Xiaolu, Zhou, Jun, Yuan, Ye, Wang, Guoren
Chain-of-thought distillation is a powerful technique for transferring reasoning abilities from large language models (LLMs) to smaller student models. Previous methods typically require the student to mimic the step-by-step rationale produced by LLMs, often facing the following challenges: (i) Tokens within a rationale vary in significance, and treating them equally may fail to accurately mimic keypoint tokens, leading to reasoning errors. (ii) They usually distill knowledge by consistently predicting all the steps in a rationale, which falls short in distinguishing the learning order of step generation. This diverges from the human cognitive progression of starting with easy tasks and advancing to harder ones, resulting in sub-optimal outcomes. To this end, we propose a unified framework, called KPOD, to address these issues. Specifically, we propose a token weighting module utilizing mask learning to encourage accurate mimicry of keypoint tokens by the student during distillation. Besides, we develop an in-rationale progressive distillation strategy, starting with training the student to generate the final reasoning steps and gradually extending to cover the entire rationale. To accomplish this, a weighted token generation loss is proposed to assess step reasoning difficulty, and a value function is devised to schedule the progressive distillation by considering both step difficulty and question diversity. Extensive experiments on four reasoning benchmarks illustrate our KPOD outperforms previous methods by a large margin.
Shared Growth of Graph Neural Networks via Prompted Free-direction Knowledge Distillation
Feng, Kaituo, Miao, Yikun, Li, Changsheng, Yuan, Ye, Wang, Guoren
Knowledge distillation (KD) has shown to be effective to boost the performance of graph neural networks (GNNs), where the typical objective is to distill knowledge from a deeper teacher GNN into a shallower student GNN. However, it is often quite challenging to train a satisfactory deeper GNN due to the well-known over-parametrized and over-smoothing issues, leading to invalid knowledge transfer in practical applications. In this paper, we propose the first Free-direction Knowledge Distillation framework via reinforcement learning for GNNs, called FreeKD, which is no longer required to provide a deeper well-optimized teacher GNN. Our core idea is to collaboratively learn two shallower GNNs to exchange knowledge between them. As we observe that one typical GNN model often exhibits better and worse performances at different nodes during training, we devise a dynamic and free-direction knowledge transfer strategy that involves two levels of actions: 1) node-level action determines the directions of knowledge transfer between the corresponding nodes of two networks; and then 2) structure-level action determines which of the local structures generated by the node-level actions to be propagated. Additionally, considering that different augmented graphs can potentially capture distinct perspectives of the graph data, we propose FreeKD-Prompt that learns undistorted and diverse augmentations based on prompt learning for exchanging varied knowledge. Furthermore, instead of confining knowledge exchange within two GNNs, we develop FreeKD++ to enable free-direction knowledge transfer among multiple GNNs. Extensive experiments on five benchmark datasets demonstrate our approaches outperform the base GNNs in a large margin. More surprisingly, our FreeKD has comparable or even better performance than traditional KD algorithms that distill knowledge from a deeper and stronger teacher GNN.
Towards Open Temporal Graph Neural Networks
Feng, Kaituo, Li, Changsheng, Zhang, Xiaolu, Zhou, Jun
Graph neural networks (GNNs) for temporal graphs have recently attracted increasing attentions, where a common assumption is that the class set for nodes is closed. However, in real-world scenarios, it often faces the open set problem with the dynamically increased class set as the time passes by. This will bring two big challenges to the existing temporal GNN methods: (i) How to dynamically propagate appropriate information in an open temporal graph, where new class nodes are often linked to old class nodes. This case will lead to a sharp contradiction. This is because typical GNNs are prone to make the embeddings of connected nodes become similar, while we expect the embeddings of these two interactive nodes to be distinguishable since they belong to different classes. In this paper, we propose a general and principled learning approach for open temporal graphs, called OTGNet, with the goal of addressing the above two challenges. We assume the knowledge of a node can be disentangled into class-relevant and class-agnostic one, and thus explore a new message passing mechanism by extending the information bottleneck principle to only propagate class-agnostic knowledge between nodes of different classes, avoiding aggregating conflictive information. Moreover, we devise a strategy to select both important and diverse triad sub-graph structures for effective class-incremental learning. Extensive experiments on three real-world datasets of different domains demonstrate the superiority of our method, compared to the baselines. Temporal graph (Nguyen et al., 2018) represents a sequence of time-stamped events (e.g. For instance, in topic communities, all posts can be modelled as a graph, where each node represents one post. New posts can be continually added into the community, thus the graph is dynamically evolving.
FreeKD: Free-direction Knowledge Distillation for Graph Neural Networks
Feng, Kaituo, Li, Changsheng, Yuan, Ye, Wang, Guoren
Knowledge distillation (KD) has demonstrated its effectiveness to boost the performance of graph neural networks (GNNs), where its goal is to distill knowledge from a deeper teacher GNN into a shallower student GNN. However, it is actually difficult to train a satisfactory teacher GNN due to the well-known over-parametrized and over-smoothing issues, leading to invalid knowledge transfer in practical applications. In this paper, we propose the first Free-direction Knowledge Distillation framework via Reinforcement learning for GNNs, called FreeKD, which is no longer required to provide a deeper well-optimized teacher GNN. The core idea of our work is to collaboratively build two shallower GNNs in an effort to exchange knowledge between them via reinforcement learning in a hierarchical way. As we observe that one typical GNN model often has better and worse performances at different nodes during training, we devise a dynamic and free-direction knowledge transfer strategy that consists of two levels of actions: 1) node-level action determines the directions of knowledge transfer between the corresponding nodes of two networks; and then 2) structure-level action determines which of the local structures generated by the node-level actions to be propagated. In essence, our FreeKD is a general and principled framework which can be naturally compatible with GNNs of different architectures. Extensive experiments on five benchmark datasets demonstrate our FreeKD outperforms two base GNNs in a large margin, and shows its efficacy to various GNNs. More surprisingly, our FreeKD has comparable or even better performance than traditional KD algorithms that distill knowledge from a deeper and stronger teacher GNN.