Goto

Collaborating Authors

 Feng, Jun


APS-LSTM: Exploiting Multi-Periodicity and Diverse Spatial Dependencies for Flood Forecasting

arXiv.org Artificial Intelligence

Accurate flood prediction is crucial for disaster prevention and mitigation. Hydrological data exhibit highly nonlinear temporal patterns and encompass complex spatial relationships between rainfall and flow. Existing flood prediction models struggle to capture these intricate temporal features and spatial dependencies. This paper presents an adaptive periodic and spatial self-attention method based on LSTM (APS-LSTM) to address these challenges. The APS-LSTM learns temporal features from a multi-periodicity perspective and captures diverse spatial dependencies from different period divisions. The APS-LSTM consists of three main stages, (i) Multi-Period Division, that utilizes Fast Fourier Transform (FFT) to divide various periodic patterns; (ii) Spatio-Temporal Information Extraction, that performs periodic and spatial self-attention focusing on intra- and inter-periodic temporal patterns and spatial dependencies; (iii) Adaptive Aggregation, that relies on amplitude strength to aggregate the computational results from each periodic division. The abundant experiments on two real-world datasets demonstrate the superiority of APS-LSTM. The code is available: https://github.com/oopcmd/APS-LSTM.


Prompt-Guided Generation of Structured Chest X-Ray Report Using a Pre-trained LLM

arXiv.org Artificial Intelligence

Medical report generation automates radiology descriptions from images, easing the burden on physicians and minimizing errors. However, current methods lack structured outputs and physician interactivity for clear, clinically relevant reports. Our method introduces a prompt-guided approach to generate structured chest X-ray reports using a pre-trained large language model (LLM). First, we identify anatomical regions in chest X-rays to generate focused sentences that center on key visual elements, thereby establishing a structured report foundation with anatomy-based sentences. We also convert the detected anatomy into textual prompts conveying anatomical comprehension to the LLM. Additionally, the clinical context prompts guide the LLM to emphasize interactivity and clinical requirements. By integrating anatomy-focused sentences and anatomy/clinical prompts, the pre-trained LLM can generate structured chest X-ray reports tailored to prompted anatomical regions and clinical contexts. We evaluate using language generation and clinical effectiveness metrics, demonstrating strong performance.


Scalable Normalizing Flows Enable Boltzmann Generators for Macromolecules

arXiv.org Artificial Intelligence

The Boltzmann distribution of a protein provides a roadmap to all of its functional states. Normalizing flows are a promising tool for modeling this distribution, but current methods are intractable for typical pharmacological targets; they become computationally intractable due to the size of the system, heterogeneity of intramolecular potential energy, and long-range interactions. To remedy these issues, we present a novel flow architecture that utilizes split channels and gated attention to efficiently learn the conformational distribution of proteins defined by internal coordinates. We show that by utilizing a 2-Wasserstein loss, one can smooth the transition from maximum likelihood training to energy-based training, enabling the training of Boltzmann Generators for macromolecules. We evaluate our model and training strategy on villin headpiece HP35(nle-nle), a 35-residue subdomain, and protein G, a 56-residue protein. We demonstrate that standard architectures and training strategies, such as maximum likelihood alone, fail while our novel architecture and multi-stage training strategy are able to model the conformational distributions of protein G and HP35. The structural ensemble of a protein determines its functions. The probabilities of the ground and metastable states of a protein at equilibrium for a given temperature determine the interactions of the protein with other proteins, effectors, and drugs, which are keys for pharmaceutical development. However, enumeration of the equilibrium conformations and their probabilities is infeasible. Since complete knowledge is inaccessible, we must adopt a sampling approach. Conventional approaches toward sampling the equilibrium ensemble rely on Markov-chain Monte Carlo or molecular dynamics (MD). These approaches explore the local energy landscape adjacent a starting point; however, they are limited by their inability to penetrate high energy barriers. In addition, MD simulations are expensive and scale poorly with system size.


Cross-Corpus Multilingual Speech Emotion Recognition: Amharic vs. Other Languages

arXiv.org Artificial Intelligence

In a conventional Speech emotion recognition (SER) task, a classifier for a given language is trained on a pre-existing dataset for that same language. However, where training data for a language does not exist, data from other languages can be used instead. We experiment with cross-lingual and multilingual SER, working with Amharic, English, German and URDU. For Amharic, we use our own publicly-available Amharic Speech Emotion Dataset (ASED). For English, German and Urdu we use the existing RAVDESS, EMO-DB and URDU datasets. We followed previous research in mapping labels for all datasets to just two classes, positive and negative. Thus we can compare performance on different languages directly, and combine languages for training and testing. In Experiment 1, monolingual SER trials were carried out using three classifiers, AlexNet, VGGE (a proposed variant of VGG), and ResNet50. Results averaged for the three models were very similar for ASED and RAVDESS, suggesting that Amharic and English SER are equally difficult. Similarly, German SER is more difficult, and Urdu SER is easier. In Experiment 2, we trained on one language and tested on another, in both directions for each pair: Amharic<->German, Amharic<->English, and Amharic<->Urdu. Results with Amharic as target suggested that using English or German as source will give the best result. In Experiment 3, we trained on several non-Amharic languages and then tested on Amharic. The best accuracy obtained was several percent greater than the best accuracy in Experiment 2, suggesting that a better result can be obtained when using two or three non-Amharic languages for training than when using just one non-Amharic language. Overall, the results suggest that cross-lingual and multilingual training can be an effective strategy for training a SER classifier when resources for a language are scarce.


Kinit Classification in Ethiopian Chants, Azmaris and Modern Music: A New Dataset and CNN Benchmark

arXiv.org Artificial Intelligence

In this paper, we create EMIR, the first-ever Music Information Retrieval dataset for Ethiopian music. EMIR is freely available for research purposes and contains 600 sample recordings of Orthodox Tewahedo chants, traditional Azmari songs and contemporary Ethiopian secular music. Each sample is classified by five expert judges into one of four well-known Ethiopian Kinits, Tizita, Bati, Ambassel and Anchihoye. Each Kinit uses its own pentatonic scale and also has its own stylistic characteristics. Thus, Kinit classification needs to combine scale identification with genre recognition. After describing the dataset, we present the Ethio Kinits Model (EKM), based on VGG, for classifying the EMIR clips. In Experiment 1, we investigated whether Filterbank, Mel-spectrogram, Chroma, or Mel-frequency Cepstral coefficient (MFCC) features work best for Kinit classification using EKM. MFCC was found to be superior and was therefore adopted for Experiment 2, where the performance of EKM models using MFCC was compared using three different audio sample lengths. 3s length gave the best results. In Experiment 3, EKM and four existing models were compared on the EMIR dataset: AlexNet, ResNet50, VGG16 and LSTM. EKM was found to have the best accuracy (95.00%) as well as the fastest training time. We hope this work will encourage others to explore Ethiopian music and to experiment with other models for Kinit classification.


DeepBundle: Fiber Bundle Parcellation with Graph Convolution Neural Networks

arXiv.org Artificial Intelligence

Parcellation of whole-brain tractography streamlines is an important step for tract-based analysis of brain white matter microstructure. Existing fiber parcellation approaches rely on accurate registration between an atlas and the tractograms of an individual, however, due to large individual differences, accurate registration is hard to guarantee in practice. To resolve this issue, we propose a novel deep learning method, called DeepBundle, for registration-free fiber parcellation. Our method utilizes graph convolution neural networks (GCNNs) to predict the parcellation label of each fiber tract. GCNNs are capable of extracting the geometric features of each fiber tract and harnessing the resulting features for accurate fiber parcellation and ultimately avoiding the use of atlases and any registration method. We evaluate DeepBundle using data from the Human Connectome Project. Experimental results demonstrate the advantages of DeepBundle and suggest that the geometric features extracted from each fiber tract can be used to effectively parcellate the fiber tracts.


Aggregating E-commerce Search Results from Heterogeneous Sources via Hierarchical Reinforcement Learning

arXiv.org Artificial Intelligence

In this paper, we investigate the task of aggregating search results from heterogeneous sources in an E-commerce environment. First, unlike traditional aggregated web search that merely presents multi-sourced results in the first page, this new task may present aggregated results in all pages and has to dynamically decide which source should be presented in the current page. Second, as pointed out by many existing studies, it is not trivial to rank items from heterogeneous sources because the relevance scores from different source systems are not directly comparable. To address these two issues, we decompose the task into two subtasks in a hierarchical structure: a high-level task for source selection where we model the sequential patterns of user behaviors onto aggregated results in different pages so as to understand user intents and select the relevant sources properly; and a low-level task for item presentation where we formulate a slot filling process to sequentially present the items instead of giving each item a relevance score when deciding the presentation order of heterogeneous items. Since both subtasks can be naturally formulated as sequential decision problems and learn from the future user feedback on search results, we build our model with hierarchical reinforcement learning. Extensive experiments demonstrate that our model obtains remarkable improvements in search performance metrics, and achieves a higher user satisfaction.


Relation Mention Extraction from Noisy Data with Hierarchical Reinforcement Learning

arXiv.org Artificial Intelligence

In this paper we address a task of relation mention extraction from noisy data: extracting representative phrases for a particular relation from noisy sentences that are collected via distant supervision. Despite its significance and value in many downstream applications, this task is less studied on noisy data. The major challenges exists in 1) the lack of annotation on mention phrases, and more severely, 2) handling noisy sentences which do not express a relation at all. To address the two challenges, we formulate the task as a semi-Markov decision process and propose a novel hierarchical reinforcement learning model. Our model consists of a top-level sentence selector to remove noisy sentences, a low-level mention extractor to extract relation mentions, and a reward estimator to provide signals to guide data denoising and mention extraction without explicit annotations. Experimental results show that our model is effective to extract relation mentions from noisy data.


Learning to Collaborate: Multi-Scenario Ranking via Multi-Agent Reinforcement Learning

arXiv.org Artificial Intelligence

Ranking is a fundamental and widely studied problem in scenarios such as search, advertising, and recommendation. However, joint optimization for multi-scenario ranking, which aims to improve the overall performance of several ranking strategies in different scenarios, is rather untouched. Separately optimizing each individual strategy has two limitations. The first one is lack of collaboration between scenarios meaning that each strategy maximizes its own objective but ignores the goals of other strategies, leading to a sub-optimal overall performance. The second limitation is the inability of modeling the correlation between scenarios meaning that independent optimization in one scenario only uses its own user data but ignores the context in other scenarios. In this paper, we formulate multi-scenario ranking as a fully cooperative, partially observable, multi-agent sequential decision problem. We propose a novel model named Multi-Agent Recurrent Deterministic Policy Gradient (MA-RDPG) which has a communication component for passing messages, several private actors (agents) for making actions for ranking, and a centralized critic for evaluating the overall performance of the co-working actors. Each scenario is treated as an agent (actor). Agents collaborate with each other by sharing a global action-value function (the critic) and passing messages that encodes historical information across scenarios. The model is evaluated with online settings on a large E-commerce platform. Results show that the proposed model exhibits significant improvements against baselines in terms of the overall performance.


Reinforcement Learning for Relation Classification from Noisy Data

arXiv.org Machine Learning

Existing relation classification methods that rely on distant supervision assume that a bag of sentences mentioning an entity pair are all describing a relation for the entity pair. Such methods, performing classification at the bag level, cannot identify the mapping between a relation and a sentence, and largely suffers from the noisy labeling problem. In this paper, we propose a novel model for relation classification at the sentence level from noisy data. The model has two modules: an instance selector and a relation classifier. The instance selector chooses high-quality sentences with reinforcement learning and feeds the selected sentences into the relation classifier, and the relation classifier makes sentence level prediction and provides rewards to the instance selector. The two modules are trained jointly to optimize the instance selection and relation classification processes. Experiment results show that our model can deal with the noise of data effectively and obtains better performance for relation classification at the sentence level.