Goto

Collaborating Authors

 Feng, Hui


Invariant Federated Learning for Edge Intelligence: Mitigating Heterogeneity and Asynchrony via Exit Strategy and Invariant Penalty

arXiv.org Artificial Intelligence

This paper provides an invariant federated learning system for resource-constrained edge intelligence. This framework can avoid the impact of heterogeneity and asynchrony by exit strategy and invariant penalty. We decompose local information into two orthogonal components to measure the contribution or impact of heterogeneous and asynchronous clients. We propose that the exit of abnormal clients can guarantee the effect of the model on most clients. Meanwhile, to ensure the models' performance on exited abnormal clients and those who lack training resources, we propose Federated Learning with Invariant Penalty for Generalization (FedIPG) based on the invariant orthogonal decomposition of parameters. Theoretical proof shows that FedIPG reduces the Out-Of-Distribution prediction loss without increasing the communication burden. The performance of FedIPG combined with an exit strategy is tested empirically in multiple scales using four datasets. It shows our system can enhance In-Distribution performance and outperform the state-of-the-art algorithm in Out-Of-Distribution generalization while maintaining model convergence. Additionally, the results of the visual experiment prove that FedIPG contains preliminary causality in terms of ignoring confounding features.


The Impact Analysis of Delays in Asynchronous Federated Learning with Data Heterogeneity for Edge Intelligence

arXiv.org Artificial Intelligence

Federated learning (FL) has provided a new methodology for coordinating a group of clients to train a machine learning model collaboratively, bringing an efficient paradigm in edge intelligence. Despite its promise, FL faces several critical challenges in practical applications involving edge devices, such as data heterogeneity and delays stemming from communication and computation constraints. This paper examines the impact of unknown causes of delay on training performance in an Asynchronous Federated Learning (AFL) system with data heterogeneity. Initially, an asynchronous error definition is proposed, based on which the solely adverse impact of data heterogeneity is theoretically analyzed within the traditional Synchronous Federated Learning (SFL) framework. Furthermore, Asynchronous Updates with Delayed Gradients (AUDG), a conventional AFL scheme, is discussed. Investigation into AUDG reveals that the negative influence of data heterogeneity is correlated with delays, while a shorter average delay from a specific client does not consistently enhance training performance. In order to compensate for the scenarios where AUDG are not adapted, Pseudo-synchronous Updates by Reusing Delayed Gradients (PSURDG) is proposed, and its theoretical convergence is analyzed. In both AUDG and PSURDG, only a random set of clients successfully transmits their updated results to the central server in each iteration. The critical difference between them lies in whether the delayed information is reused. Finally, both schemes are validated and compared through theoretical analysis and simulations, demonstrating more intuitively that discarding outdated information due to time delays is not always the best approach.


Building Altruistic and Moral AI Agent with Brain-inspired Affective Empathy Mechanisms

arXiv.org Artificial Intelligence

As AI closely interacts with human society, it is crucial to ensure that its decision-making is safe, altruistic, and aligned with human ethical and moral values. However, existing research on embedding ethical and moral considerations into AI remains insufficient, and previous external constraints based on principles and rules are inadequate to provide AI with long-term stability and generalization capabilities. In contrast, the intrinsic altruistic motivation based on empathy is more willing, spontaneous, and robust. Therefore, this paper is dedicated to autonomously driving intelligent agents to acquire morally behaviors through human-like affective empathy mechanisms. We draw inspiration from the neural mechanism of human brain's moral intuitive decision-making, and simulate the mirror neuron system to construct a brain-inspired affective empathy-driven altruistic decision-making model. Here, empathy directly impacts dopamine release to form intrinsic altruistic motivation. Based on the principle of moral utilitarianism, we design the moral reward function that integrates intrinsic empathy and extrinsic self-task goals. A comprehensive experimental scenario incorporating empathetic processes, personal objectives, and altruistic goals is developed. The proposed model enables the agent to make consistent moral decisions (prioritizing altruism) by balancing self-interest with the well-being of others. We further introduce inhibitory neurons to regulate different levels of empathy and verify the positive correlation between empathy levels and altruistic preferences, yielding conclusions consistent with findings from psychological behavioral experiments. This work provides a feasible solution for the development of ethical AI by leveraging the intrinsic human-like empathy mechanisms, and contributes to the harmonious coexistence between humans and AI.


Cross-lingual Speech Emotion Recognition: Humans vs. Self-Supervised Models

arXiv.org Artificial Intelligence

Utilizing Self-Supervised Learning (SSL) models for Speech Emotion Recognition (SER) has proven effective, yet limited research has explored cross-lingual scenarios. This study presents a comparative analysis between human performance and SSL models, beginning with a layer-wise analysis and an exploration of parameter-efficient fine-tuning strategies in monolingual, cross-lingual, and transfer learning contexts. We further compare the SER ability of models and humans at both utterance- and segment-levels. Additionally, we investigate the impact of dialect on cross-lingual SER through human evaluation. Our findings reveal that models, with appropriate knowledge transfer, can adapt to the target language and achieve performance comparable to native speakers. We also demonstrate the significant effect of dialect on SER for individuals without prior linguistic and paralinguistic background. Moreover, both humans and models exhibit distinct behaviors across different emotions. These results offer new insights into the cross-lingual SER capabilities of SSL models, underscoring both their similarities to and differences from human emotion perception.


Brain-inspired and Self-based Artificial Intelligence

arXiv.org Artificial Intelligence

The question "Can machines think?" and the Turing Test to assess whether machines could achieve human-level intelligence is one of the roots of AI. With the philosophical argument "I think, therefore I am", this paper challenge the idea of a "thinking machine" supported by current AIs since there is no sense of self in them. Current artificial intelligence is only seemingly intelligent information processing and does not truly understand or be subjectively aware of oneself and perceive the world with the self as human intelligence does. In this paper, we introduce a Brain-inspired and Self-based Artificial Intelligence (BriSe AI) paradigm. This BriSe AI paradigm is dedicated to coordinating various cognitive functions and learning strategies in a self-organized manner to build human-level AI models and robotic applications. Specifically, BriSe AI emphasizes the crucial role of the Self in shaping the future AI, rooted with a practical hierarchical Self framework, including Perception and Learning, Bodily Self, Autonomous Self, Social Self, and Conceptual Self. The hierarchical framework of the Self highlights self-based environment perception, self-bodily modeling, autonomous interaction with the environment, social interaction and collaboration with others, and even more abstract understanding of the Self. Furthermore, the positive mutual promotion and support among multiple levels of Self, as well as between Self and learning, enhance the BriSe AI's conscious understanding of information and flexible adaptation to complex environments, serving as a driving force propelling BriSe AI towards real Artificial General Intelligence.


Toward Packet Routing with Fully-distributed Multi-agent Deep Reinforcement Learning

arXiv.org Artificial Intelligence

Packet routing is one of the fundamental problems in computer networks in which a router determines the next-hop of each packet in the queue to get it as quickly as possible to its destination. Reinforcement learning has been introduced to design the autonomous packet routing policy namely Q-routing only using local information available to each router. However, the curse of dimensionality of Q-routing prohibits the more comprehensive representation of dynamic network states, thus limiting the potential benefit of reinforcement learning. Inspired by recent success of deep reinforcement learning (DRL), we embed deep neural networks in multi-agent Q-routing. Each router possesses an independent neural network that is trained without communicating with its neighbors and makes decision locally. Two multi-agent DRL-enabled routing algorithms are proposed: one simply replaces Q-table of vanilla Q-routing by a deep neural network, and the other further employs extra information including the past actions and the destinations of non-head of line packets. Our simulation manifests that the direct substitution of Q-table by a deep neural network may not yield minimal delivery delays because the neural network does not learn more from the same input. When more information is utilized, adaptive routing policy can converge and significantly reduce the packet delivery time.