Feng, Haotian
Shedding Light on the Polymer's Identity: Microplastic Detection and Identification Through Nile Red Staining and Multispectral Imaging (FIMAP)
Ho, Derek, Feng, Haotian
The widespread distribution of microplastics (MPs) in the environment presents significant challenges for their detection and identification. Fluorescence imaging has emerged as a promising technique for enhancing plastic particle detectability and enabling accurate classification based on fluorescence behavior. However, conventional segmentation techniques face limitations, including poor signal-to-noise ratio, inconsistent illumination, thresholding difficulties, and false positives from natural organic matter (NOM). To address these challenges, this study introduces the Fluorescence Imaging Microplastic Analysis Platform (FIMAP), a retrofitted multispectral camera with four optical filters and five excitation wavelengths. FIMAP enables comprehensive characterization of the fluorescence behavior of ten Nile Red-stained MPs: HDPE, LDPE, PP, PS, EPS, ABS, PVC, PC, PET, and PA, while effectively excluding NOM. Using K-means clustering for robust segmentation (Intersection over Union = 0.877) and a 20-dimensional color coordinate multivariate nearest neighbor approach for MP classification (>3.14 mm), FIMAP achieves 90% precision, 90% accuracy, 100% recall, and an F1 score of 94.7%. Only PS was occasionally misclassified as EPS. For smaller MPs (35-104 microns), classification accuracy declined, likely due to reduced stain sorption, fewer detectable pixels, and camera instability. Integrating FIMAP with higher-magnification instruments, such as a microscope, may enhance MP identification. This study presents FIMAP as an automated, high-throughput framework for detecting and classifying MPs across large environmental sample volumes.
Physics-Constrained Neural Network for Design and Feature-Based Optimization of Weave Architectures
Feng, Haotian, Subramaniyan, Sabarinathan P, Tewani, Hridyesh, Prabhakar, Pavana
Woven fabrics play an essential role in everyday textiles for clothing/sportswear, water filtration, and retaining walls, to reinforcements in stiff composites for lightweight structures like aerospace, sporting, automotive, and marine industries. Several possible combinations of weave patterns and material choices, which comprise weave architecture, present a challenging question about how they could influence the physical and mechanical properties of woven fabrics and reinforced structures. In this paper, we present a novel Physics-Constrained Neural Network (PCNN) to predict the mechanical properties like the modulus of weave architectures and the inverse problem of predicting pattern/material sequence for a design/target modulus value. The inverse problem is particularly challenging as it usually requires many iterations to find the appropriate architecture using traditional optimization approaches. We show that the proposed PCNN can effectively predict weave architecture for the desired modulus with higher accuracy than several baseline models considered. We present a feature-based optimization strategy to improve the predictions using features in the Grey Level Co-occurrence Matrix (GLCM) space. We combine PCNN with this feature-based optimization to discover near-optimal weave architectures to facilitate the initial design of weave architecture. The proposed frameworks will primarily enable the woven composite analysis and optimization process, and be a starting point to introduce Knowledge-guided Neural Networks into the complex structural analysis.