Feng, Haiyang
Step-Video-T2V Technical Report: The Practice, Challenges, and Future of Video Foundation Model
Ma, Guoqing, Huang, Haoyang, Yan, Kun, Chen, Liangyu, Duan, Nan, Yin, Shengming, Wan, Changyi, Ming, Ranchen, Song, Xiaoniu, Chen, Xing, Zhou, Yu, Sun, Deshan, Zhou, Deyu, Zhou, Jian, Tan, Kaijun, An, Kang, Chen, Mei, Ji, Wei, Wu, Qiling, Sun, Wen, Han, Xin, Wei, Yanan, Ge, Zheng, Li, Aojie, Wang, Bin, Huang, Bizhu, Wang, Bo, Li, Brian, Miao, Changxing, Xu, Chen, Wu, Chenfei, Yu, Chenguang, Shi, Dapeng, Hu, Dingyuan, Liu, Enle, Yu, Gang, Yang, Ge, Huang, Guanzhe, Yan, Gulin, Feng, Haiyang, Nie, Hao, Jia, Haonan, Hu, Hanpeng, Chen, Hanqi, Yan, Haolong, Wang, Heng, Guo, Hongcheng, Xiong, Huilin, Xiong, Huixin, Gong, Jiahao, Wu, Jianchang, Wu, Jiaoren, Wu, Jie, Yang, Jie, Liu, Jiashuai, Li, Jiashuo, Zhang, Jingyang, Guo, Junjing, Lin, Junzhe, Li, Kaixiang, Liu, Lei, Xia, Lei, Zhao, Liang, Tan, Liguo, Huang, Liwen, Shi, Liying, Li, Ming, Li, Mingliang, Cheng, Muhua, Wang, Na, Chen, Qiaohui, He, Qinglin, Liang, Qiuyan, Sun, Quan, Sun, Ran, Wang, Rui, Pang, Shaoliang, Yang, Shiliang, Liu, Sitong, Liu, Siqi, Gao, Shuli, Cao, Tiancheng, Wang, Tianyu, Ming, Weipeng, He, Wenqing, Zhao, Xu, Zhang, Xuelin, Zeng, Xianfang, Liu, Xiaojia, Yang, Xuan, Dai, Yaqi, Yu, Yanbo, Li, Yang, Deng, Yineng, Wang, Yingming, Wang, Yilei, Lu, Yuanwei, Chen, Yu, Luo, Yu, Luo, Yuchu, Yin, Yuhe, Feng, Yuheng, Yang, Yuxiang, Tang, Zecheng, Zhang, Zekai, Yang, Zidong, Jiao, Binxing, Chen, Jiansheng, Li, Jing, Zhou, Shuchang, Zhang, Xiangyu, Zhang, Xinhao, Zhu, Yibo, Shum, Heung-Yeung, Jiang, Daxin
We present Step-Video-T2V, a state-of-the-art text-to-video pre-trained model with 30B parameters and the ability to generate videos up to 204 frames in length. A deep compression Variational Autoencoder, Video-VAE, is designed for video generation tasks, achieving 16x16 spatial and 8x temporal compression ratios, while maintaining exceptional video reconstruction quality. User prompts are encoded using two bilingual text encoders to handle both English and Chinese. A DiT with 3D full attention is trained using Flow Matching and is employed to denoise input noise into latent frames. A video-based DPO approach, Video-DPO, is applied to reduce artifacts and improve the visual quality of the generated videos. We also detail our training strategies and share key observations and insights. Step-Video-T2V's performance is evaluated on a novel video generation benchmark, Step-Video-T2V-Eval, demonstrating its state-of-the-art text-to-video quality when compared with both open-source and commercial engines. Additionally, we discuss the limitations of current diffusion-based model paradigm and outline future directions for video foundation models. We make both Step-Video-T2V and Step-Video-T2V-Eval available at https://github.com/stepfun-ai/Step-Video-T2V. The online version can be accessed from https://yuewen.cn/videos as well. Our goal is to accelerate the innovation of video foundation models and empower video content creators.
Hierarchical Decoupling Capacitor Optimization for Power Distribution Network of 2.5D ICs with Co-Analysis of Frequency and Time Domains Based on Deep Reinforcement Learning
Duan, Yuanyuan, Feng, Haiyang, Yu, Zhiping, Wu, Hanming, Shao, Leilai, Zhu, Xiaolei
With the growing need for higher memory bandwidth and computation density, 2.5D design, which involves integrating multiple chiplets onto an interposer, emerges as a promising solution. However, this integration introduces significant challenges due to increasing data rates and a large number of I/Os, necessitating advanced optimization of the power distribution networks (PDNs) both on-chip and on-interposer to mitigate the small signal noise and simultaneous switching noise (SSN). Traditional PDN optimization strategies in 2.5D systems primarily focus on reducing impedance by integrating decoupling capacitors (decaps) to lessen small signal noises. Unfortunately, relying solely on frequency-domain analysis has been proven inadequate for addressing coupled SSN, as indicated by our experimental results. In this work, we introduce a novel two-phase optimization flow using deep reinforcement learning to tackle both the on-chip small signal noise and SSN. Initially, we optimize the impedance in the frequency domain to maintain the small signal noise within acceptable limits while avoiding over-design. Subsequently, in the time domain, we refine the PDN to minimize the voltage violation integral (VVI), a more accurate measure of SSN severity. To the best of our knowledge, this is the first dual-domain optimization strategy that simultaneously addresses both the small signal noise and SSN propagation through strategic decap placement in on-chip and on-interposer PDNs, offering a significant step forward in the design of robust PDNs for 2.5D integrated systems.