Felix Xinnan X. Yu
Sampled Softmax with Random Fourier Features
Ankit Singh Rawat, Jiecao Chen, Felix Xinnan X. Yu, Ananda Theertha Suresh, Sanjiv Kumar
cpSGD: Communication-efficient and differentially-private distributed SGD
Naman Agarwal, Ananda Theertha Suresh, Felix Xinnan X. Yu, Sanjiv Kumar, Brendan McMahan
Distributed stochastic gradient descent is an important subroutine in distributed learning. A setting of particular interest is when the clients are mobile devices, where two important concerns are communication efficiency and the privacy of the clients. Several recent works have focused on reducing the communication cost or introducing privacy guarantees, but none of the proposed communication efficient methods are known to be privacy preserving and none of the known privacy mechanisms are known to be communication efficient. To this end, we study algorithms that achieve both communication efficiency and differential privacy. For d variables and n d clients, the proposed method uses O(log log(nd)) bits of communication per client per coordinate and ensures constant privacy. We also improve previous analysis of the Binomial mechanism showing that it achieves nearly the same utility as the Gaussian mechanism, while requiring fewer representation bits, which can be of independent interest.
Sampled Softmax with Random Fourier Features
Ankit Singh Rawat, Jiecao Chen, Felix Xinnan X. Yu, Ananda Theertha Suresh, Sanjiv Kumar
The computational cost of training with softmax cross entropy loss grows linearly with the number of classes. For the settings where a large number of classes are involved, a common method to speed up training is to sample a subset of classes and utilize an estimate of the loss gradient based on these classes, known as the sampled softmax method. However, the sampled softmax provides a biased estimate of the gradient unless the samples are drawn from the exact softmax distribution, which is again expensive to compute. Therefore, a widely employed practical approach involves sampling from a simpler distribution in the hope of approximating the exact softmax distribution. In this paper, we develop the first theoretical understanding of the role that different sampling distributions play in determining the quality of sampled softmax. Motivated by our analysis and the work on kernel-based sampling, we propose the Random Fourier Softmax (RFsoftmax) method that utilizes the powerful Random Fourier Features to enable more efficient and accurate sampling from an approximate softmax distribution. We show that RF-softmax leads to low bias in estimation in terms of both the full softmax distribution and the full softmax gradient.
Orthogonal Random Features
Felix Xinnan X. Yu, Ananda Theertha Suresh, Krzysztof M. Choromanski, Daniel N. Holtmann-Rice, Sanjiv Kumar
We present an intriguing discovery related to Random Fourier Features: in Gaussian kernel approximation, replacing the random Gaussian matrix by a properly scaled random orthogonal matrix significantly decreases kernel approximation error. We call this technique Orthogonal Random Features (ORF), and provide theoretical and empirical justification for this behavior. Motivated by this discovery, we further propose Structured Orthogonal Random Features (SORF), which uses a class of structured discrete orthogonal matrices to speed up the computation.
cpSGD: Communication-efficient and differentially-private distributed SGD
Naman Agarwal, Ananda Theertha Suresh, Felix Xinnan X. Yu, Sanjiv Kumar, Brendan McMahan
Distributed stochastic gradient descent is an important subroutine in distributed learning. A setting of particular interest is when the clients are mobile devices, where two important concerns are communication efficiency and the privacy of the clients. Several recent works have focused on reducing the communication cost or introducing privacy guarantees, but none of the proposed communication efficient methods are known to be privacy preserving and none of the known privacy mechanisms are known to be communication efficient. To this end, we study algorithms that achieve both communication efficiency and differential privacy. For d variables and n d clients, the proposed method uses O(log log(nd)) bits of communication per client per coordinate and ensures constant privacy. We also improve previous analysis of the Binomial mechanism showing that it achieves nearly the same utility as the Gaussian mechanism, while requiring fewer representation bits, which can be of independent interest.