Feldman, Michal
The Pseudo-Dimension of Contracts
Duetting, Paul, Feldman, Michal, Ponitka, Tomasz, Soumalias, Ermis
Algorithmic contract design studies scenarios where a principal incentivizes an agent to exert effort on her behalf. In this work, we focus on settings where the agent's type is drawn from an unknown distribution, and formalize an offline learning framework for learning near-optimal contracts from sample agent types. A central tool in our analysis is the notion of pseudo-dimension from statistical learning theory. Beyond its role in establishing upper bounds on the sample complexity, pseudo-dimension measures the intrinsic complexity of a class of contracts, offering a new perspective on the tradeoffs between simplicity and optimality in contract design. Our main results provide essentially optimal tradeoffs between pseudo-dimension and representation error (defined as the loss in principal's utility) with respect to linear and bounded contracts. Using these tradeoffs, we derive sample- and time-efficient learning algorithms, and demonstrate their near-optimality by providing almost matching lower bounds on the sample complexity. Conversely, for unbounded contracts, we prove an impossibility result showing that no learning algorithm exists. Finally, we extend our techniques in three important ways. First, we provide refined pseudo-dimension and sample complexity guarantees for the combinatorial actions model, revealing a novel connection between the number of critical values and sample complexity. Second, we extend our results to menus of contracts, showing that their pseudo-dimension scales linearly with the menu size. Third, we adapt our algorithms to the online learning setting, where we show that, a polynomial number of type samples suffice to learn near-optimal bounded contracts. Combined with prior work, this establishes a formal separation between expert advice and bandit feedback for this setting.
On Fair Division under Heterogeneous Matroid Constraints
Dror, Amitay (Tel Aviv University) | Feldman, Michal (Tel Aviv University) | Segal-Halevi, Erel
We study fair allocation of indivisible goods among additive agents with feasibility constraints. In these settings, every agent is restricted to get a bundle among a specified set of feasible bundles. Such scenarios have been of great interest to the AI community due to their applicability to real-world problems. Following some impossibility results, we restrict attention to matroid feasibility constraints that capture natural scenarios, such as the allocation of shifts to medical doctors and the allocation of conference papers to referees. We focus on the common fairness notion of envy-freeness up to one good (EF1). Previous algorithms for finding EF1 allocations are either restricted to agents with identical feasibility constraints or allow free disposal of items. An open problem is the existence of EF1 complete allocations among agents who differ both in their valuations and in their feasibility constraints. In this work, we make progress on this problem by providing positive and negative results for several matroid and valuation types. Among other results, we devise polynomial-time algorithms for finding EF1 allocations in the following settings: (i) n agents with heterogeneous (non-identical) binary valuations and partition matroids with heterogeneous capacities; (ii) two agents with heterogeneous additive valuations and partition matroids with heterogeneous capacities; and (iii) three agents with heterogeneous binary valuations and identical base-orderable matroid constraints.
Online Pricing with Strategic and Patient Buyers
Feldman, Michal, Koren, Tomer, Livni, Roi, Mansour, Yishay, Zohar, Aviv
We consider a seller with an unlimited supply of a single good, who is faced with a stream of $T$ buyers. Each buyer has a window of time in which she would like to purchase, and would buy at the lowest price in that window, provided that this price is lower than her private value (and otherwise, would not buy at all). In this setting, we give an algorithm that attains $O(T^{2/3})$ regret over any sequence of $T$ buyers with respect to the best fixed price in hindsight, and prove that no algorithm can perform better in the worst case.
Variations on the Hotelling-Downs Model
Feldman, Michal (Tel Aviv University) | Fiat, Amos (Tel Aviv University) | Obraztsova, Svetlana (Hebrew University of Jerusalem)
In this paper we expand the standard Hotelling-Downs model of spatial competition to a setting where clients do not necessarily choose their closest candidate (retail product or political). Specifically, we consider a setting where clients may disavow all candidates if there is no candidate that is sufficiently close to the client preferences. Moreover, if there are multiple candidates that are sufficiently close, the client may choose amongst them at random. We show the existence of Nash Equilibria for some such models, and study the price of anarchy and stability in such scenarios.
On Voting and Facility Location
Feldman, Michal, Fiat, Amos, Golomb, Iddan
We study mechanisms for candidate selection that seek to minimize the social cost, where voters and candidates are associated with points in some underlying metric space. The social cost of a candidate is the sum of its distances to each voter. Some of our work assumes that these points can be modeled on a real line, but other results of ours are more general. A question closely related to candidate selection is that of minimizing the sum of distances for facility location. The difference is that in our setting there is a fixed set of candidates, whereas the large body of work on facility location seems to consider every point in the metric space to be a possible candidate. This gives rise to three types of mechanisms which differ in the granularity of their input space (voting, ranking and location mechanisms). We study the relationships between these three classes of mechanisms. While it may seem that Black's 1948 median algorithm is optimal for candidate selection on the line, this is not the case. We give matching upper and lower bounds for a variety of settings. In particular, when candidates and voters are on the line, our universally truthful spike mechanism gives a [tight] approximation of two. When assessing candidate selection mechanisms, we seek several desirable properties: (a) efficiency (minimizing the social cost) (b) truthfulness (dominant strategy incentive compatibility) and (c) simplicity (a smaller input space). We quantify the effect that truthfulness and simplicity impose on the efficiency.
Implementing the Wisdom of Waze
Vasserman, Shoshana (Harvard University) | Feldman, Michal (Tel-Aviv University) | Hassidim, Avinatan (Bar Ilan University, Google)
We study a setting of non-atomic routing in a network of m parallel links with asymmetry of information. While a central entity (such as a GPS navigation system) — a mediator hereafter — knows the cost functions associated with the links, they are unknown to the individual agents controlling the flow. The mediator gives incentive compatible recommendations to agents, trying to minimize the total travel time. Can the mediator do better than when agents minimize their travel time selfishly without coercing agents to follow his recommendations? We study the mediation ratio: the ratio between the mediated equilibrium obtained from an incentive compatible mediation protocol and the social optimum. We find that mediation protocols can reduce the efficiency loss compared to the full revelation alternative, and compared to the non mediated Nash equilibrium. In particular, in the case of two links with affine cost functions, the mediation ratio is at most 8/7, and remains strictly smaller than the price of anarchy of 4/3 for any fixed m. Yet, it approaches the price of anarchy as m grows. For general (monotone) cost functions, the mediation ratio is at most m, a significant improvement over the unbounded price of anarchy
Do Capacity Constraints Constrain Coalitions?
Feldman, Michal (Tel Aviv University) | Geri, Ofir (Tel Aviv University)
We study strong equilibria in symmetric capacitated cost-sharing games. In these games, a graph with designated source s and sink t is given, and each edge is associated with some cost. Each agent chooses strategically an s-t path, knowing that the cost of each edge is shared equally between all agents using it. Two variants of cost-sharing games have been previously studied: (i) games where coalitions can form, and (ii) games where edges are associated with capacities; both variants are inspired by real-life scenarios. In this work we combine these variants and analyze strong equilibria (profiles where no coalition can deviate) in capacitated games. This combination gives rise to new phenomena that do not occur in the previous variants. Our contribution is two-fold. First, we provide a topological characterization of networks that always admit a strong equilibrium. Second, we establish tight bounds on the efficiency loss that may be incurred due to strategic behavior, as quantified by the strong price of anarchy (and stability) measures. Interestingly, our results are qualitatively different than those obtained in the analysis of each variant alone, and the combination of coalitions and capacities entails the introduction of more refined topology classes than previously studied.
A Unifying Hierarchy of Valuations with Complements and Substitutes
Feige, Uriel (Weizmann Institute of Science) | Feldman, Michal (Tel-Aviv University) | Immorlica, Nicole (Microsoft Research) | Izsak, Rani (Weizmann Institute of Science) | Lucier, Brendan (Microsoft Research) | Syrgkanis, Vasilis (Microsoft Research)
We introduce a new hierarchy over monotone set functions, that we refer to as MPH (Maximum over Positive Hypergraphs). Levels of the hierarchy correspond to the degree of complementarity in a given function. The highest level of the hierarchy, MPH-m (where m is the total number of items) captures all monotone functions. The lowest level, MPH-1, captures all monotone submodular functions, and more generally, the class of functions known as XOS. Every monotone function that has a positive hypergraph representation of rank k (in the sense defined by Abraham, Babaioff, Dughmi and Roughgarden [EC 2012]) is in MPH-k. Every monotone function that has supermodular degree k (in the sense defined by Feige and Izsak [ITCS 2013]) is in MPH-(k+1). In both cases, the converse direction does not hold, even in an approximate sense. We present additional results that demonstrate the expressiveness power of MPH-k. One can obtain good approximation ratios for some natural optimization problems, provided that functions are required to lie in low levels of the MPH hierarchy. We present two such applications. One shows that the maximum welfare problem can be approximated within a ratio of k+1 if all players hold valuation functions in MPH-k. The other is an upper bound of 2k on the price of anarchy of simultaneous first price auctions.
On Maxsum Fair Cake Divisions
Brams, Steven J. (New York University) | Feldman, Michal (Harvard University and Hebrew University) | Lai, John K. (Harvard University) | Morgenstern, Jamie (Carnegie Mellon University) | Procaccia, Ariel D. (Carnegie Mellon University)
We consider the problem of selecting fair divisions of a heterogeneous divisible good among a set of agents. Recent work (Cohler et al., AAAI 2011) focused on designing algorithms for computing maxsum—social welfare maximizing—allocations under the fairness notion of envy-freeness. Maxsum allocations can also be found under alternative notions such as equitability. In this paper, we examine the properties of these allocations. In particular, We provide conditions for when maxsum envy-free or equitable allocations are Pareto optimal and give examples where fairness with Pareto optimality is not possible. We also prove that maxsum envy-free allocations have weakly greater welfare than maxsum equitable allocations when agents have structured valuations, and we derive an approximate version of this inequality for general valuations.
Solving Cooperative Reliability Games
Bachrach, Yoram, Meir, Reshef, Feldman, Michal, Tennenholtz, Moshe
Cooperative games model the allocation of profit from joint actions, following considerations such as stability and fairness. We propose the reliability extension of such games, where agents may fail to participate in the game. In the reliability extension, each agent only "survives" with a certain probability, and a coalition's value is the probability that its surviving members would be a winning coalition in the base game. We study prominent solution concepts in such games, showing how to approximate the Shapley value and how to compute the core in games with few agent types. We also show that applying the reliability extension may stabilize the game, making the core non-empty even when the base game has an empty core.