Feldman, Dan, Faulkner, Matthew, Krause, Andreas

How can we train a statistical mixture model on a massive data set? In this paper, we show how to construct coresets for mixtures of Gaussians and natural generalizations. A coreset is a weighted subset of the data, which guarantees that models fitting the coreset will also provide a good fit for the original data set. We show that, perhaps surprisingly, Gaussian mixtures admit coresets of size independent of the size of the data set. More precisely, we prove that a weighted set of $O(dk 3/\eps 2)$ data points suffices for computing a $(1 \eps)$-approximation for the optimal model on the original $n$ data points.

Feldman, Dan, Volkov, Mikhail, Rus, Daniela

In this paper we present a practical solution with performance guarantees to the problem of dimensionality reduction for very large scale sparse matrices. We show applications of our approach to computing the Principle Component Analysis (PCA) of any $n\times d$ matrix, using one pass over the stream of its rows. Our solution uses coresets: a scaled subset of the $n$ rows that approximates their sum of squared distances to \emph{every} $k$-dimensional \emph{affine} subspace. An open theoretical problem has been to compute such a coreset that is independent of both $n$ and $d$. An open practical problem has been to compute a non-trivial approximation to the PCA of very large but sparse databases such as the Wikipedia document-term matrix in a reasonable time.

Rosman, Guy, Volkov, Mikhail, Feldman, Dan, III, John W. Fisher, Rus, Daniela

Life-logging video streams, financial time series, and Twitter tweets are a few examples of high-dimensional signals over practically unbounded time. We consider the problem of computing optimal segmentation of such signals by k-piecewise linear function, using only one pass over the data by maintaining a coreset for the signal. The coreset enables fast further analysis such as automatic summarization and analysis of such signals. A coreset (core-set) is a compact representation of the data seen so far, which approximates the data well for a specific task -- in our case, segmentation of the stream. We show that, perhaps surprisingly, the segmentation problem admits coresets of cardinality only linear in the number of segments k, independently of both the dimension d of the signal, and its number n of points.

Marom, Yair, Feldman, Dan

The input to the \emph{$k$-mean for lines} problem is a set $L$ of $n$ lines in $\mathbb{R} d$, and the goal is to compute a set of $k$ centers (points) in $\mathbb{R} d$ that minimizes the sum of squared distances over every line in $L$ and its nearest center. This is a straightforward generalization of the $k$-mean problem where the input is a set of $n$ points instead of lines. We suggest the first PTAS that computes a $(1 \epsilon)$-approximation to this problem in time $O(n \log n)$ for any constant approximation error $\epsilon \in (0, 1)$, and constant integers $k, d \geq 1$. This is by proving that there is always a weighted subset (called coreset) of $dk {O(k)}\log (n)/\epsilon 2$ lines in $L$ that approximates the sum of squared distances from $L$ to \emph{any} given set of $k$ points. Using traditional merge-and-reduce technique, this coreset implies results for a streaming set (possibly infinite) of lines to $M$ machines in one pass (e.g.

Maalouf, Alaa, Jubran, Ibrahim, Feldman, Dan

Least-mean squares (LMS) solvers such as Linear / Ridge / Lasso-Regression, SVD and Elastic-Net not only solve fundamental machine learning problems, but are also the building blocks in a variety of other methods, such as decision trees and matrix factorizations. We suggest an algorithm that gets a finite set of $n$ $d$-dimensional real vectors and returns a weighted subset of $d 1$ vectors whose sum is \emph{exactly} the same. The proof in Caratheodory's Theorem (1907) computes such a subset in $O(n 2d 2)$ time and thus not used in practice. Our algorithm computes this subset in $O(nd)$ time, using $O(\log n)$ calls to Caratheodory's construction on small but "smart" subsets. This is based on a novel paradigm of fusion between different data summarization techniques, known as sketches and coresets.

Liebenwein, Lucas, Baykal, Cenk, Lang, Harry, Feldman, Dan, Rus, Daniela

We present a provable, sampling-based approach for generating compact Convolutional Neural Networks (CNNs) by identifying and removing redundant filters from an over-parameterized network. Our algorithm uses a small batch of input data points to assign a saliency score to each filter and constructs an importance sampling distribution where filters that highly affect the output are sampled with correspondingly high probability. In contrast to existing filter pruning approaches, our method is simultaneously data-informed, exhibits provable guarantees on the size and performance of the pruned network, and is widely applicable to varying network architectures and data sets. Our analytical bounds bridge the notions of compressibility and importance of network structures, which gives rise to a fully-automated procedure for identifying and preserving filters in layers that are essential to the network's performance. Our experimental evaluations on popular architectures and data sets show that our algorithm consistently generates sparser and more efficient models than those constructed by existing filter pruning approaches.

Jubran, Ibrahim, Maalouf, Alaa, Feldman, Dan

A coreset (or core-set) of an input set is its small summation, such that solving a problem on the coreset as its input, provably yields the same result as solving the same problem on the original (full) set, for a given family of problems (models, classifiers, loss functions). Over the past decade, coreset construction algorithms have been suggested for many fundamental problems in e.g. machine/deep learning, computer vision, graphics, databases, and theoretical computer science. This introductory paper was written following requests from (usually non-expert, but also colleagues) regarding the many inconsistent coreset definitions, lack of available source code, the required deep theoretical background from different fields, and the dense papers that make it hard for beginners to apply coresets and develop new ones. The paper provides folklore, classic and simple results including step-by-step proofs and figures, for the simplest (accurate) coresets of very basic problems, such as: sum of vectors, minimum enclosing ball, SVD/ PCA and linear regression. Nevertheless, we did not find most of their constructions in the literature. Moreover, we expect that putting them together in a retrospective context would help the reader to grasp modern results that usually extend and generalize these fundamental observations. Experts might appreciate the unified notation and comparison table that links between existing results. Open source code with example scripts are provided for all the presented algorithms, to demonstrate their practical usage, and to support the readers who are more familiar with programming than math.

Baykal, Cenk, Liebenwein, Lucas, Gilitschenski, Igor, Feldman, Dan, Rus, Daniela

We introduce a pruning algorithm that provably sparsifies the parameters of a trained model in a way that approximately preserves the model's predictive accuracy. Our algorithm uses a small batch of input points to construct a data-informed importance sampling distribution over the network's parameters, and adaptively mixes a sampling-based and deterministic pruning procedure to discard redundant weights. Our pruning method is simultaneously computationally efficient, provably accurate, and broadly applicable to various network architectures and data distributions. Our empirical comparisons show that our algorithm reliably generates highly compressed networks that incur minimal loss in performance relative to that of the original network. We present experimental results that demonstrate our algorithm's potential to unearth essential network connections that can be trained successfully in isolation, which may be of independent interest.

Mussay, Ben, Zhou, Samson, Braverman, Vladimir, Feldman, Dan

Model compression provides a means to efficiently deploy deep neural networks (DNNs) on devices that limited computation resources and tight power budgets, such as mobile and IoT (Internet of Things) devices. Consequently, model compression is one of the most critical topics in modern deep learning. Typically, the state-of-the-art model compression methods suffer from a big limitation: they are only based on heuristics rather than theoretical foundation and thus offer no worst-case guarantees. To bridge this gap, Baykal et. al. [2018a] suggested using a coreset, a small weighted subset of the data that provably approximates the original data set, to sparsify the parameters of a trained fully-connected neural network by sampling a number of neural network parameters based on the importance of the data. However, the sampling procedure is data-dependent and can only be only be performed after an expensive training phase. We propose the use of data-independent coresets to perform provable model compression without the need for training. We first prove that there exists a coreset whose size is independent of the input size of the data for any neuron whose activation function is from a family of functions that includes variants of ReLU, sigmoid and others. We then provide a compression-based algorithm that constructs these coresets and explicitly applies neuron pruning for the underlying model. We demonstrate the effectiveness of our methods with experimental evaluations for both synthetic and real-world benchmark network compression. In particular, our framework provides up to 90% compression on the LeNet-300-100 architecture on MNIST and actually improves the accuracy.

Maalouf, Alaa, Statman, Adiel, Feldman, Dan

An $\varepsilon$-coreset for Least-Mean-Squares (LMS) of a matrix $A\in{\mathbb{R}}^{n\times d}$ is a small weighted subset of its rows that approximates the sum of squared distances from its rows to every affine $k$-dimensional subspace of ${\mathbb{R}}^d$, up to a factor of $1\pm\varepsilon$. Such coresets are useful for hyper-parameter tuning and solving many least-mean-squares problems such as low-rank approximation ($k$-SVD), $k$-PCA, Lassso/Ridge/Linear regression and many more. Coresets are also useful for handling streaming, dynamic and distributed big data in parallel. With high probability, non-uniform sampling based on upper bounds on what is known as importance or sensitivity of each row in $A$ yields a coreset. The size of the (sampled) coreset is then near-linear in the total sum of these sensitivity bounds. We provide algorithms that compute provably \emph{tight} bounds for the sensitivity of each input row. It is based on two ingredients: (i) iterative algorithm that computes the exact sensitivity of each point up to arbitrary small precision for (non-affine) $k$-subspaces, and (ii) a general reduction of independent interest from computing sensitivity for the family of affine $k$-subspaces in ${\mathbb{R}}^d$ to (non-affine) $(k+1)$- subspaces in ${\mathbb{R}}^{d+1}$. Experimental results on real-world datasets, including the English Wikipedia documents-term matrix, show that our bounds provide significantly smaller and data-dependent coresets also in practice. Full open source is also provided.