Goto

Collaborating Authors

 Fei-Fei, Li F.


HYPE: A Benchmark for Human eYe Perceptual Evaluation of Generative Models

Neural Information Processing Systems

Generative models often use human evaluations to measure the perceived quality of their outputs. Automated metrics are noisy indirect proxies, because they rely on heuristics or pretrained embeddings. However, up until now, direct human evaluation strategies have been ad-hoc, neither standardized nor validated. Our work establishes a gold standard human benchmark for generative realism. We construct Human eYe Perceptual Evaluation (HYPE) a human benchmark that is (1) grounded in psychophysics research in perception, (2) reliable across different sets of randomly sampled outputs from a model, (3) able to produce separable model performances, and (4) efficient in cost and time.


Deep Fragment Embeddings for Bidirectional Image Sentence Mapping

Neural Information Processing Systems

We introduce a model for bidirectional retrieval of images and sentences through a deep, multi-modal embedding of visual and natural language data. Unlike previous models that directly map images or sentences into a common embedding space, our model works on a finer level and embeds fragments of images (objects) and fragments of sentences (typed dependency tree relations) into a common space. We then introduce a structured max-margin objective that allows our model to explicitly associate these fragments across modalities. Extensive experimental evaluation shows that reasoning on both the global level of images and sentences and the finer level of their respective fragments improves performance on image-sentence retrieval tasks. Additionally, our model provides interpretable predictions for the image-sentence retrieval task since the inferred inter-modal alignment of fragments is explicit.


Learning to Play With Intrinsically-Motivated, Self-Aware Agents

Neural Information Processing Systems

Infants are experts at playing, with an amazing ability to generate novel structured behaviors in unstructured environments that lack clear extrinsic reward signals. We seek to mathematically formalize these abilities using a neural network that implements curiosity-driven intrinsic motivation. Using a simple but ecologically naturalistic simulated environment in which an agent can move and interact with objects it sees, we propose a "world-model" network that learns to predict the dynamic consequences of the agent's actions. Simultaneously, we train a separate explicit "self-model" that allows the agent to track the error map of its world-model. It then uses the self-model to adversarially challenge the developing world-model. We demonstrate that this policy causes the agent to explore novel and informative interactions with its environment, leading to the generation of a spectrum of complex behaviors, including ego-motion prediction, object attention, and object gathering. Moreover, the world-model that the agent learns supports improved performance on object dynamics prediction, detection, localization and recognition tasks. Taken together, our results are initial steps toward creating flexible autonomous agents that self-supervise in realistic physical environments.


Learning to Play With Intrinsically-Motivated, Self-Aware Agents

Neural Information Processing Systems

Infants are experts at playing, with an amazing ability to generate novel structured behaviors in unstructured environments that lack clear extrinsic reward signals. We seek to mathematically formalize these abilities using a neural network that implements curiosity-driven intrinsic motivation. Using a simple but ecologically naturalistic simulated environment in which an agent can move and interact with objects it sees, we propose a "world-model" network that learns to predict the dynamic consequences of the agent's actions. Simultaneously, we train a separate explicit "self-model" that allows the agent to track the error map of its world-model. It then uses the self-model to adversarially challenge the developing world-model. We demonstrate that this policy causes the agent to explore novel and informative interactions with its environment, leading to the generation of a spectrum of complex behaviors, including ego-motion prediction, object attention, and object gathering. Moreover, the world-model that the agent learns supports improved performance on object dynamics prediction, detection, localization and recognition tasks. Taken together, our results are initial steps toward creating flexible autonomous agents that self-supervise in realistic physical environments.


Flexible neural representation for physics prediction

Neural Information Processing Systems

Humans have a remarkable capacity to understand the physical dynamics of objects in their environment, flexibly capturing complex structures and interactions at multiple levels of detail. Inspired by this ability, we propose a hierarchical particle-based object representation that covers a wide variety of types of three-dimensional objects, including both arbitrary rigid geometrical shapes and deformable materials. We then describe the Hierarchical Relation Network (HRN), an end-to-end differentiable neural network based on hierarchical graph convolution, that learns to predict physical dynamics in this representation. Compared to other neural network baselines, the HRN accurately handles complex collisions and nonrigid deformations, generating plausible dynamics predictions at long time scales in novel settings, and scaling to large scene configurations. These results demonstrate an architecture with the potential to form the basis of next-generation physics predictors for use in computer vision, robotics, and quantitative cognitive science.


Learning to Decompose and Disentangle Representations for Video Prediction

Neural Information Processing Systems

Our goal is to predict future video frames given a sequence of input frames. Despite large amounts of video data, this remains a challenging task because of the high-dimensionality of video frames. We address this challenge by proposing the Decompositional Disentangled Predictive Auto-Encoder (DDPAE), a framework that combines structured probabilistic models and deep networks to automatically (i) decompose the high-dimensional video that we aim to predict into components, and (ii) disentangle each component to have low-dimensional temporal dynamics that are easier to predict. Crucially, with an appropriately specified generative model of video frames, our DDPAE is able to learn both the latent decomposition and disentanglement without explicit supervision. For the Moving MNIST dataset, we show that DDPAE is able to recover the underlying components (individual digits) and disentanglement (appearance and location) as we would intuitively do. We further demonstrate that DDPAE can be applied to the Bouncing Balls dataset involving complex interactions between multiple objects to predict the video frame directly from the pixels and recover physical states without explicit supervision.


Flexible neural representation for physics prediction

Neural Information Processing Systems

Humans have a remarkable capacity to understand the physical dynamics of objects in their environment, flexibly capturing complex structures and interactions at multiple levels of detail. Inspired by this ability, we propose a hierarchical particle-based object representation that covers a wide variety of types of three-dimensional objects, including both arbitrary rigid geometrical shapes and deformable materials. We then describe the Hierarchical Relation Network (HRN), an end-to-end differentiable neural network based on hierarchical graph convolution, that learns to predict physical dynamics in this representation. Compared to other neural network baselines, the HRN accurately handles complex collisions and nonrigid deformations, generating plausible dynamics predictions at long time scales in novel settings, and scaling to large scene configurations. These results demonstrate an architecture with the potential to form the basis of next-generation physics predictors for use in computer vision, robotics, and quantitative cognitive science.


Learning to Decompose and Disentangle Representations for Video Prediction

Neural Information Processing Systems

Our goal is to predict future video frames given a sequence of input frames. Despite large amounts of video data, this remains a challenging task because of the high-dimensionality of video frames. We address this challenge by proposing the Decompositional Disentangled Predictive Auto-Encoder (DDPAE), a framework that combines structured probabilistic models and deep networks to automatically (i) decompose the high-dimensional video that we aim to predict into components, and (ii) disentangle each component to have low-dimensional temporal dynamics that are easier to predict. Crucially, with an appropriately specified generative model of video frames, our DDPAE is able to learn both the latent decomposition and disentanglement without explicit supervision. For the Moving MNIST dataset, we show that DDPAE is able to recover the underlying components (individual digits) and disentanglement (appearance and location) as we would intuitively do. We further demonstrate that DDPAE can be applied to the Bouncing Balls dataset involving complex interactions between multiple objects to predict the video frame directly from the pixels and recover physical states without explicit supervision.


Label Efficient Learning of Transferable Representations acrosss Domains and Tasks

Neural Information Processing Systems

We propose a framework that learns a representation transferable across different domains and tasks in a data efficient manner. Our approach battles domain shift with a domain adversarial loss, and generalizes the embedding to novel task using a metric learning-based approach. Our model is simultaneously optimized on labeled source data and unlabeled or sparsely labeled data in the target domain. Our method shows compelling results on novel classes within a new domain even when only a few labeled examples per class are available, outperforming the prevalent fine-tuning approach. In addition, we demonstrate the effectiveness of our framework on the transfer learning task from image object recognition to video action recognition.


Deep Fragment Embeddings for Bidirectional Image Sentence Mapping

Neural Information Processing Systems

We introduce a model for bidirectional retrieval of images and sentences through a deep, multi-modal embedding of visual and natural language data. Unlike previous models that directly map images or sentences into a common embedding space, our model works on a finer level and embeds fragments of images (objects) and fragments of sentences (typed dependency tree relations) into a common space. We then introduce a structured max-margin objective that allows our model to explicitly associate these fragments across modalities. Extensive experimental evaluation shows that reasoning on both the global level of images and sentences and the finer level of their respective fragments improves performance on image-sentence retrieval tasks. Additionally, our model provides interpretable predictions for the image-sentence retrieval task since the inferred inter-modal alignment of fragments is explicit.