Fei Tian
Neural Architecture Optimization
Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, Tie-Yan Liu
Automatic neural architecture design has shown its potential in discovering powerful neural network architectures. Existing methods, no matter based on reinforcement learning or evolutionary algorithms (EA), conduct architecture search in a discrete space, which is highly inefficient. In this paper, we propose a simple and efficient method to automatic neural architecture design based on continuous optimization. We call this new approach neural architecture optimization (NAO). There are three key components in our proposed approach: (1) An encoder embeds/maps neural network architectures into a continuous space.
Neural Machine Translation with Soft Prototype
Yiren Wang, Yingce Xia, Fei Tian, Fei Gao, Tao Qin, Cheng Xiang Zhai, Tie-Yan Liu
Neural machine translation models usually use the encoder-decoder framework and generate translation from left to right (or right to left) without fully utilizing the target-side global information. A few recent approaches seek to exploit the global information through two-pass decoding, yet have limitations in translation quality and model efficiency. In this work, we propose a new framework that introduces a soft prototype into the encoder-decoder architecture, which allows the decoder to have indirect access to both past and future information, such that each target word can be generated based on the better global understanding. We further provide an efficient and effective method to generate the prototype. Empirical studies on various neural machine translation tasks show that our approach brings substantial improvement in generation quality over the baseline model, with little extra cost in storage and inference time, demonstrating the effectiveness of our proposed framework. Specially, we achieve state-of-the-art results on WMT2014, 2015 and 2017 English German translation.
Deliberation Networks: Sequence Generation Beyond One-Pass Decoding
Yingce Xia, Fei Tian, Lijun Wu, Jianxin Lin, Tao Qin, Nenghai Yu, Tie-Yan Liu
The encoder-decoder framework has achieved promising progress for many sequence generation tasks, including machine translation, text summarization, dialog system, image captioning, etc. Such a framework adopts an one-pass forward process while decoding and generating a sequence, but lacks the deliberation process: A generated sequence is directly used as final output without further polishing. However, deliberation is a common behavior in human's daily life like reading news and writing papers/articles/books. In this work, we introduce the deliberation process into the encoder-decoder framework and propose deliberation networks for sequence generation. A deliberation network has two levels of decoders, where the first-pass decoder generates a raw sequence and the second-pass decoder polishes and refines the raw sentence with deliberation. Since the second-pass deliberation decoder has global information about what the sequence to be generated might be, it has the potential to generate a better sequence by looking into future words in the raw sentence. Experiments on neural machine translation and text summarization demonstrate the effectiveness of the proposed deliberation networks. On the WMT 2014 English-to-French translation task, our model establishes a new state-of-the-art BLEU score of 41.5.
Neural Architecture Optimization
Renqian Luo, Fei Tian, Tao Qin, Enhong Chen, Tie-Yan Liu
Automatic neural architecture design has shown its potential in discovering powerful neural network architectures. Existing methods, no matter based on reinforcement learning or evolutionary algorithms (EA), conduct architecture search in a discrete space, which is highly inefficient. In this paper, we propose a simple and efficient method to automatic neural architecture design based on continuous optimization. We call this new approach neural architecture optimization (NAO). There are three key components in our proposed approach: (1) An encoder embeds/maps neural network architectures into a continuous space.
Learning to Teach with Dynamic Loss Functions
Lijun Wu, Fei Tian, Yingce Xia, Yang Fan, Tao Qin, Lai Jian-Huang, Tie-Yan Liu
Teaching is critical to human society: it is with teaching that prospective students are educated and human civilization can be inherited and advanced. A good teacher not only provides his/her students with qualified teaching materials (e.g., textbooks), but also sets up appropriate learning objectives (e.g., course projects and exams) considering different situations of a student. When it comes to artificial intelligence, treating machine learning models as students, the loss functions that are optimized act as perfect counterparts of the learning objective set by the teacher. In this work, we explore the possibility of imitating human teaching behaviors by dynamically and automatically outputting appropriate loss functions to train machine learning models. Different from typical learning settings in which the loss function of a machine learning model is predefined and fixed, in our framework, the loss function of a machine learning model (we call it student) is defined by another machine learning model (we call it teacher).
Deliberation Networks: Sequence Generation Beyond One-Pass Decoding
Yingce Xia, Fei Tian, Lijun Wu, Jianxin Lin, Tao Qin, Nenghai Yu, Tie-Yan Liu
The encoder-decoder framework has achieved promising progress for many sequence generation tasks, including machine translation, text summarization, dialog system, image captioning, etc. Such a framework adopts an one-pass forward process while decoding and generating a sequence, but lacks the deliberation process: A generated sequence is directly used as final output without further polishing. However, deliberation is a common behavior in human's daily life like reading news and writing papers/articles/books. In this work, we introduce the deliberation process into the encoder-decoder framework and propose deliberation networks for sequence generation. A deliberation network has two levels of decoders, where the first-pass decoder generates a raw sequence and the second-pass decoder polishes and refines the raw sentence with deliberation. Since the second-pass deliberation decoder has global information about what the sequence to be generated might be, it has the potential to generate a better sequence by looking into future words in the raw sentence. Experiments on neural machine translation and text summarization demonstrate the effectiveness of the proposed deliberation networks. On the WMT 2014 English-to-French translation task, our model establishes a new state-of-the-art BLEU score of 41.5.
Learning to Teach with Dynamic Loss Functions
Lijun Wu, Fei Tian, Yingce Xia, Yang Fan, Tao Qin, Lai Jian-Huang, Tie-Yan Liu
Teaching is critical to human society: it is with teaching that prospective students are educated and human civilization can be inherited and advanced. A good teacher not only provides his/her students with qualified teaching materials (e.g., textbooks), but also sets up appropriate learning objectives (e.g., course projects and exams) considering different situations of a student. When it comes to artificial intelligence, treating machine learning models as students, the loss functions that are optimized act as perfect counterparts of the learning objective set by the teacher. In this work, we explore the possibility of imitating human teaching behaviors by dynamically and automatically outputting appropriate loss functions to train machine learning models. Different from typical learning settings in which the loss function of a machine learning model is predefined and fixed, in our framework, the loss function of a machine learning model (we call it student) is defined by another machine learning model (we call it teacher).