Goto

Collaborating Authors

 Feder, Meir


Universal Batch Learning Under The Misspecification Setting

arXiv.org Artificial Intelligence

In this paper we consider the problem of universal {\em batch} learning in a misspecification setting with log-loss. In this setting the hypothesis class is a set of models $\Theta$. However, the data is generated by an unknown distribution that may not belong to this set but comes from a larger set of models $\Phi \supset \Theta$. Given a training sample, a universal learner is requested to predict a probability distribution for the next outcome and a log-loss is incurred. The universal learner performance is measured by the regret relative to the best hypothesis matching the data, chosen from $\Theta$. Utilizing the minimax theorem and information theoretical tools, we derive the optimal universal learner, a mixture over the set of the data generating distributions, and get a closed form expression for the min-max regret. We show that this regret can be considered as a constrained version of the conditional capacity between the data and its generating distributions set. We present tight bounds for this min-max regret, implying that the complexity of the problem is dominated by the richness of the hypotheses models $\Theta$ and not by the data generating distributions set $\Phi$. We develop an extension to the Arimoto-Blahut algorithm for numerical evaluation of the regret and its capacity achieving prior distribution. We demonstrate our results for the case where the observations come from a $K$-parameters multinomial distributions while the hypothesis class $\Theta$ is only a subset of this family of distributions.


Error Exponent in Agnostic PAC Learning

arXiv.org Machine Learning

Statistical learning theory and the Probably Approximately Correct (PAC) criterion are the common approach to mathematical learning theory. PAC is widely used to analyze learning problems and algorithms, and have been studied thoroughly. Uniform worst case bounds on the convergence rate have been well established using, e.g., VC theory or Radamacher complexity. However, in a typical scenario the performance could be much better. In this paper, we consider PAC learning using a somewhat different tradeoff, the error exponent - a well established analysis method in Information Theory - which describes the exponential behavior of the probability that the risk will exceed a certain threshold as function of the sample size. We focus on binary classification and find, under some stability assumptions, an improved distribution dependent error exponent for a wide range of problems, establishing the exponential behavior of the PAC error probability in agnostic learning. Interestingly, under these assumptions, agnostic learning may have the same error exponent as realizable learning. The error exponent criterion can be applied to analyze knowledge distillation, a problem that so far lacks a theoretical analysis.


Batches Stabilize the Minimum Norm Risk in High Dimensional Overparameterized Linear Regression

arXiv.org Artificial Intelligence

Learning algorithms that divide the data into batches are prevalent in many machine-learning applications, typically offering useful trade-offs between computational efficiency and performance. In this paper, we examine the benefits of batch-partitioning through the lens of a minimum-norm overparameterized linear regression model with isotropic Gaussian features. We suggest a natural small-batch version of the minimum-norm estimator, and derive an upper bound on its quadratic risk, showing it is inversely proportional to the noise level as well as to the overparameterization ratio, for the optimal choice of batch size. In contrast to minimum-norm, our estimator admits a stable risk behavior that is monotonically increasing in the overparameterization ratio, eliminating both the blowup at the interpolation point and the double-descent phenomenon. Interestingly, we observe that this implicit regularization offered by the batch partition is partially explained by feature overlap between the batches. Our bound is derived via a novel combination of techniques, in particular normal approximation in the Wasserstein metric of noisy projections over random subspaces.


Single Layer Predictive Normalized Maximum Likelihood for Out-of-Distribution Detection

arXiv.org Artificial Intelligence

Detecting out-of-distribution (OOD) samples is vital for developing machine learning based models for critical safety systems. Common approaches for OOD detection assume access to some OOD samples during training which may not be available in a real-life scenario. Instead, we utilize the {\em predictive normalized maximum likelihood} (pNML) learner, in which no assumptions are made on the tested input. We derive an explicit expression of the pNML and its generalization error, denoted as the {\em regret}, for a single layer neural network (NN). We show that this learner generalizes well when (i) the test vector resides in a subspace spanned by the eigenvectors associated with the large eigenvalues of the empirical correlation matrix of the training data, or (ii) the test sample is far from the decision boundary. Furthermore, we describe how to efficiently apply the derived pNML regret to any pretrained deep NN, by employing the explicit pNML for the last layer, followed by the softmax function. Applying the derived regret to deep NN requires neither additional tunable parameters nor extra data. We extensively evaluate our approach on 74 OOD detection benchmarks using DenseNet-100, ResNet-34, and WideResNet-40 models trained with CIFAR-100, CIFAR-10, SVHN, and ImageNet-30 showing a significant improvement of up to 15.6\% over recent leading methods.


The Predictive Normalized Maximum Likelihood for Over-parameterized Linear Regression with Norm Constraint: Regret and Double Descent

arXiv.org Machine Learning

A fundamental tenet of learning theory is that a trade-off exists between the complexity of a prediction rule and its ability to generalize. The double-decent phenomenon shows that modern machine learning models do not obey this paradigm: beyond the interpolation limit, the test error declines as model complexity increases. We investigate over-parameterization in linear regression using the recently proposed predictive normalized maximum likelihood (pNML) learner which is the min-max regret solution for individual data. We derive an upper bound of its regret and show that if the test sample lies mostly in a subspace spanned by the eigenvectors associated with the large eigenvalues of the empirical correlation matrix of the training data, the model generalizes despite its over-parameterized nature. We demonstrate the use of the pNML regret as a point-wise learnability measure on synthetic data and that it can successfully predict the double-decent phenomenon using the UCI dataset.


Sequential prediction under log-loss and misspecification

arXiv.org Machine Learning

We consider the question of sequential prediction under the log-loss in terms of cumulative regret. Namely, given a hypothesis class of distributions, learner sequentially predicts the (distribution of the) next letter in sequence and its performance is compared to the baseline of the best constant predictor from the hypothesis class. The well-specified case corresponds to an additional assumption that the data-generating distribution belongs to the hypothesis class as well. Here we present results in the more general misspecified case. Due to special properties of the log-loss, the same problem arises in the context of competitive-optimality in density estimation, and model selection. For the $d$-dimensional Gaussian location hypothesis class, we show that cumulative regrets in the well-specified and misspecified cases asymptotically coincide. In other words, we provide an $o(1)$ characterization of the distribution-free (or PAC) regret in this case -- the first such result as far as we know. We recall that the worst-case (or individual-sequence) regret in this case is larger by an additive constant ${d\over 2} + o(1)$. Surprisingly, neither the traditional Bayesian estimators, nor the Shtarkov's normalized maximum likelihood achieve the PAC regret and our estimator requires special "robustification" against heavy-tailed data. In addition, we show two general results for misspecified regret: the existence and uniqueness of the optimal estimator, and the bound sandwiching the misspecified regret between well-specified regrets with (asymptotically) close hypotheses classes.


Efficient Data-Dependent Learnability

arXiv.org Machine Learning

The predictive normalized maximum likelihood (pNML) approach has recently been proposed as the min-max optimal solution to the batch learning problem where both the training set and the test data feature are individuals, known sequences. This approach has yields a learnability measure that can also be interpreted as a stability measure. This measure has shown some potential in detecting out-of-distribution examples, yet it has considerable computational costs. In this project, we propose and analyze an approximation of the pNML, which is based on influence functions. Combining both theoretical analysis and experiments, we show that when applied to neural networks, this approximation can detect out-of-distribution examples effectively. We also compare its performance to that achieved by conducting a single gradient step for each possible label.


A New Look at an Old Problem: A Universal Learning Approach to Linear Regression

arXiv.org Machine Learning

Linear regression is a classical paradigm in statistics. A new look at it is provided via the lens of universal learning. In applying universal learning to linear regression the hypotheses class represents the label $y\in {\cal R}$ as a linear combination of the feature vector $x^T\theta$ where $x\in {\cal R}^M$, within a Gaussian error. The Predictive Normalized Maximum Likelihood (pNML) solution for universal learning of individual data can be expressed analytically in this case, as well as its associated learnability measure. Interestingly, the situation where the number of parameters $M$ may even be larger than the number of training samples $N$ can be examined. As expected, in this case learnability cannot be attained in every situation; nevertheless, if the test vector resides mostly in a subspace spanned by the eigenvectors associated with the large eigenvalues of the empirical correlation matrix of the training data, linear regression can generalize despite the fact that it uses an ``over-parametrized'' model. We demonstrate the results with a simulation of fitting a polynomial to data with a possibly large polynomial degree.


Deep pNML: Predictive Normalized Maximum Likelihood for Deep Neural Networks

arXiv.org Machine Learning

The Predictive Normalized Maximum Likelihood (pNML) scheme has been recently suggested for universal learning in the individual setting, where both the training and test samples are individual data. The goal of universal learning is to compete with a ``genie'' or reference learner that knows the data values, but is restricted to use a learner from a given model class. The pNML minimizes the associated regret for any possible value of the unknown label. Furthermore, its min-max regret can serve as a pointwise measure of learnability for the specific training and data sample. In this work we examine the pNML and its associated learnability measure for the Deep Neural Network (DNN) model class. As shown, the pNML outperforms the commonly used Empirical Risk Minimization (ERM) approach and provides robustness against adversarial attacks. Together with its learnability measure it can detect out of distribution test examples, be tolerant to noisy labels and serve as a confidence measure for the ERM. Finally, we extend the pNML to a ``twice universal'' solution, that provides universality for model class selection and generates a learner competing with the best one from all model classes.


Universal Supervised Learning for Individual Data

arXiv.org Machine Learning

Universal supervised learning is considered from an information theoretic point of view following the universal prediction approach, see Merhav and Feder (1998). We consider the standard supervised "batch" learning where prediction is done on a test sample once the entire training data is observed, and the individual setting where the features and labels, both in the training and test, are specific individual quantities. The information theoretic approach naturally uses the self-information loss or log-loss. Our results provide universal learning schemes that compete with a "genie" (or reference) that knows the true test label. In particular, it is demonstrated that the main proposed scheme, termed Predictive Normalized Maximum Likelihood (pNML), is a robust learning solution that outperforms the current leading approach based on Empirical Risk Minimization (ERM). Furthermore, the pNML construction provides a pointwise indication for the learnability of the specific test challenge with the given training examples