Febrinanto, Falih Gozi
GraphDART: Graph Distillation for Efficient Advanced Persistent Threat Detection
Rabooki, Saba Fathi, Li, Bowen, Febrinanto, Falih Gozi, Peng, Ciyuan, Naghizade, Elham, Han, Fengling, Xia, Feng
Cyber-physical-social systems (CPSSs) have emerged in many applications over recent decades, requiring increased attention to security concerns. The rise of sophisticated threats like Advanced Persistent Threats (APTs) makes ensuring security in CPSSs particularly challenging. Provenance graph analysis has proven effective for tracing and detecting anomalies within systems, but the sheer size and complexity of these graphs hinder the efficiency of existing methods, especially those relying on graph neural networks (GNNs). To address these challenges, we present GraphDART, a modular framework designed to distill provenance graphs into compact yet informative representations, enabling scalable and effective anomaly detection. GraphDART can take advantage of diverse graph distillation techniques, including classic and modern graph distillation methods, to condense large provenance graphs while preserving essential structural and contextual information. This approach significantly reduces computational overhead, allowing GNNs to learn from distilled graphs efficiently and enhance detection performance. Extensive evaluations on benchmark datasets demonstrate the robustness of GraphDART in detecting malicious activities across cyber-physical-social systems. By optimizing computational efficiency, GraphDART provides a scalable and practical solution to safeguard interconnected environments against APTs.
Balanced Graph Structure Information for Brain Disease Detection
Febrinanto, Falih Gozi, Liu, Mujie, Xia, Feng
Analyzing connections between brain regions of interest (ROI) is vital to detect neurological disorders such as autism or schizophrenia. Recent advancements employ graph neural networks (GNNs) to utilize graph structures in brains, improving detection performances. Current methods use correlation measures between ROI's blood-oxygen-level-dependent (BOLD) signals to generate the graph structure. Other methods use the training samples to learn the optimal graph structure through end-to-end learning. However, implementing those methods independently leads to some issues with noisy data for the correlation graphs and overfitting problems for the optimal graph. In this work, we proposed Bargrain (balanced graph structure for brains), which models two graph structures: filtered correlation matrix and optimal sample graph using graph convolution networks (GCNs). This approach aims to get advantages from both graphs and address the limitations of only relying on a single type of structure. Based on our extensive experiment, Bargrain outperforms state-of-the-art methods in classification tasks on brain disease datasets, as measured by average F1 scores.
Entropy Causal Graphs for Multivariate Time Series Anomaly Detection
Febrinanto, Falih Gozi, Moore, Kristen, Thapa, Chandra, Liu, Mujie, Saikrishna, Vidya, Ma, Jiangang, Xia, Feng
Many multivariate time series anomaly detection frameworks have been proposed and widely applied. However, most of these frameworks do not consider intrinsic relationships between variables in multivariate time series data, thus ignoring the causal relationship among variables and degrading anomaly detection performance. This work proposes a novel framework called CGAD, an entropy Causal Graph for multivariate time series Anomaly Detection. CGAD utilizes transfer entropy to construct graph structures that unveil the underlying causal relationships among time series data. Weighted graph convolutional networks combined with causal convolutions are employed to model both the causal graph structures and the temporal patterns within multivariate time series data. Furthermore, CGAD applies anomaly scoring, leveraging median absolute deviation-based normalization to improve the robustness of the anomaly identification process. Extensive experiments demonstrate that CGAD outperforms state-of-the-art methods on real-world datasets with a 15% average improvement based on three different multivariate time series anomaly detection metrics.