Goto

Collaborating Authors

 Fawaz, Kassem


"Impressively Scary:" Exploring User Perceptions and Reactions to Unraveling Machine Learning Models in Social Media Applications

arXiv.org Artificial Intelligence

Machine learning models deployed locally on social media applications are used for features, such as face filters which read faces in-real time, and they expose sensitive attributes to the apps. However, the deployment of machine learning models, e.g., when, where, and how they are used, in social media applications is opaque to users. We aim to address this inconsistency and investigate how social media user perceptions and behaviors change once exposed to these models. We conducted user studies (N=21) and found that participants were unaware to both what the models output and when the models were used in Instagram and TikTok, two major social media platforms. In response to being exposed to the models' functionality, we observed long term behavior changes in 8 participants. Our analysis uncovers the challenges and opportunities in providing transparency for machine learning models that interact with local user data.


Automatically Detecting Online Deceptive Patterns in Real-time

arXiv.org Artificial Intelligence

Deceptive patterns (DPs) in digital interfaces manipulate users into making unintended decisions, exploiting cognitive biases and psychological vulnerabilities. These patterns have become ubiquitous across various digital platforms. While efforts to mitigate DPs have emerged from legal and technical perspectives, a significant gap in usable solutions that empower users to identify and make informed decisions about DPs in real-time remains. In this work, we introduce AutoBot, an automated, deceptive pattern detector that analyzes websites' visual appearances using machine learning techniques to identify and notify users of DPs in real-time. AutoBot employs a two-staged pipeline that processes website screenshots, identifying interactable elements and extracting textual features without relying on HTML structure. By leveraging a custom language model, AutoBot understands the context surrounding these elements to determine the presence of deceptive patterns. We implement AutoBot as a lightweight Chrome browser extension that performs all analyses locally, minimizing latency and preserving user privacy. Through extensive evaluation, we demonstrate AutoBot's effectiveness in enhancing users' ability to navigate digital environments safely while providing a valuable tool for regulators to assess and enforce compliance with DP regulations.


Reliable Heading Tracking for Pedestrian Road Crossing Prediction Using Commodity Devices

arXiv.org Artificial Intelligence

Pedestrian heading tracking enables applications in pedestrian navigation, traffic safety, and accessibility. Previous works, using inertial sensor fusion or machine learning, are limited in that they assume the phone is fixed in specific orientations, hindering their generalizability. We propose a new heading tracking algorithm, the Orientation-Heading Alignment (OHA), which leverages a key insight: people tend to carry smartphones in certain ways due to habits, such as swinging them while walking. For each smartphone attitude during this motion, OHA maps the smartphone orientation to the pedestrian heading and learns such mappings efficiently from coarse headings and smartphone orientations. To anchor our algorithm in a practical scenario, we apply OHA to a challenging task: predicting when pedestrians are about to cross the road to improve road user safety. In particular, using 755 hours of walking data collected since 2020 from 60 individuals, we develop a lightweight model that operates in real-time on commodity devices to predict road crossings. Our evaluation shows that OHA achieves 3.4 times smaller heading errors across nine scenarios than existing methods. Furthermore, OHA enables the early and accurate detection of pedestrian crossing behavior, issuing crossing alerts 0.35 seconds, on average, before pedestrians enter the road range.


A Picture is Worth 500 Labels: A Case Study of Demographic Disparities in Local Machine Learning Models for Instagram and TikTok

arXiv.org Artificial Intelligence

Mobile apps have embraced user privacy by moving their data processing to the user's smartphone. Advanced machine learning (ML) models, such as vision models, can now locally analyze user images to extract insights that drive several functionalities. Capitalizing on this new processing model of locally analyzing user images, we analyze two popular social media apps, TikTok and Instagram, to reveal (1) what insights vision models in both apps infer about users from their image and video data and (2) whether these models exhibit performance disparities with respect to demographics. As vision models provide signals for sensitive technologies like age verification and facial recognition, understanding potential biases in these models is crucial for ensuring that users receive equitable and accurate services. We develop a novel method for capturing and evaluating ML tasks in mobile apps, overcoming challenges like code obfuscation, native code execution, and scalability. Our method comprises ML task detection, ML pipeline reconstruction, and ML performance assessment, specifically focusing on demographic disparities. We apply our methodology to TikTok and Instagram, revealing significant insights. For TikTok, we find issues in age and gender prediction accuracy, particularly for minors and Black individuals. In Instagram, our analysis uncovers demographic disparities in the extraction of over 500 visual concepts from images, with evidence of spurious correlations between demographic features and certain concepts.


Do Large Code Models Understand Programming Concepts? A Black-box Approach

arXiv.org Artificial Intelligence

Large Language Models' success on text generation has also made them better at code generation and coding tasks. While a lot of work has demonstrated their remarkable performance on tasks such as code completion and editing, it is still unclear as to why. We help bridge this gap by exploring to what degree auto-regressive models understand the logical constructs of the underlying programs. We propose Counterfactual Analysis for Programming Concept Predicates (CACP) as a counterfactual testing framework to evaluate whether Large Code Models understand programming concepts. With only black-box access to the model, we use CACP to evaluate ten popular Large Code Models for four different programming concepts. Our findings suggest that current models lack understanding of concepts such as data flow and control flow.


Limitations of Face Image Generation

arXiv.org Artificial Intelligence

Text-to-image diffusion models have achieved widespread popularity due to their unprecedented image generation capability. In particular, their ability to synthesize and modify human faces has spurred research into using generated face images in both training data augmentation and model performance assessments. In this paper, we study the efficacy and shortcomings of generative models in the context of face generation. Utilizing a combination of qualitative and quantitative measures, including embedding-based metrics and user studies, we present a framework to audit the characteristics of generated faces conditioned on a set of social attributes. We applied our framework on faces generated through state-of-the-art text-to-image diffusion models. We identify several limitations of face image generation that include faithfulness to the text prompt, demographic disparities, and distributional shifts. Furthermore, we present an analytical model that provides insights into how training data selection contributes to the performance of generative models.


Human-Producible Adversarial Examples

arXiv.org Artificial Intelligence

Visual adversarial examples have so far been restricted to pixel-level image manipulations in the digital world, or have required sophisticated equipment such as 2D or 3D printers to be produced in the physical real world. We present the first ever method of generating human-producible adversarial examples for the real world that requires nothing more complicated than a marker pen. We call them $\textbf{adversarial tags}$. First, building on top of differential rendering, we demonstrate that it is possible to build potent adversarial examples with just lines. We find that by drawing just $4$ lines we can disrupt a YOLO-based model in $54.8\%$ of cases; increasing this to $9$ lines disrupts $81.8\%$ of the cases tested. Next, we devise an improved method for line placement to be invariant to human drawing error. We evaluate our system thoroughly in both digital and analogue worlds and demonstrate that our tags can be applied by untrained humans. We demonstrate the effectiveness of our method for producing real-world adversarial examples by conducting a user study where participants were asked to draw over printed images using digital equivalents as guides. We further evaluate the effectiveness of both targeted and untargeted attacks, and discuss various trade-offs and method limitations, as well as the practical and ethical implications of our work. The source code will be released publicly.


Stateful Defenses for Machine Learning Models Are Not Yet Secure Against Black-box Attacks

arXiv.org Artificial Intelligence

Recent work has proposed stateful defense models (SDMs) as a compelling strategy to defend against a black-box attacker who only has query access to the model, as is common for online machine learning platforms. Such stateful defenses aim to defend against black-box attacks by tracking the query history and detecting and rejecting queries that are "similar" and thus preventing black-box attacks from finding useful gradients and making progress towards finding adversarial attacks within a reasonable query budget. Recent SDMs (e.g., Blacklight and PIHA) have shown remarkable success in defending against state-of-the-art black-box attacks. In this paper, we show that SDMs are highly vulnerable to a new class of adaptive black-box attacks. We propose a novel adaptive black-box attack strategy called Oracle-guided Adaptive Rejection Sampling (OARS) that involves two stages: (1) use initial query patterns to infer key properties about an SDM's defense; and, (2) leverage those extracted properties to design subsequent query patterns to evade the SDM's defense while making progress towards finding adversarial inputs. OARS is broadly applicable as an enhancement to existing black-box attacks - we show how to apply the strategy to enhance six common black-box attacks to be more effective against current class of SDMs. For example, OARS-enhanced versions of black-box attacks improved attack success rate against recent stateful defenses from almost 0% to to almost 100% for multiple datasets within reasonable query budgets.


SEA: Shareable and Explainable Attribution for Query-based Black-box Attacks

arXiv.org Artificial Intelligence

Machine Learning (ML) systems are vulnerable to adversarial examples, particularly those from query-based black-box attacks. Despite various efforts to detect and prevent such attacks, there is a need for a more comprehensive approach to logging, analyzing, and sharing evidence of attacks. While classic security benefits from well-established forensics and intelligence sharing, Machine Learning is yet to find a way to profile its attackers and share information about them. In response, this paper introduces SEA, a novel ML security system to characterize black-box attacks on ML systems for forensic purposes and to facilitate human-explainable intelligence sharing. SEA leverages the Hidden Markov Models framework to attribute the observed query sequence to known attacks. It thus understands the attack's progression rather than just focusing on the final adversarial examples. Our evaluations reveal that SEA is effective at attack attribution, even on their second occurrence, and is robust to adaptive strategies designed to evade forensics analysis. Interestingly, SEA's explanations of the attack behavior allow us even to fingerprint specific minor implementation bugs in attack libraries. For example, we discover that the SignOPT and Square attacks implementation in ART v1.14 sends over 50% specific zero difference queries. We thoroughly evaluate SEA on a variety of settings and demonstrate that it can recognize the same attack's second occurrence with 90+% Top-1 and 95+% Top-3 accuracy.


D4: Detection of Adversarial Diffusion Deepfakes Using Disjoint Ensembles

arXiv.org Artificial Intelligence

Detecting diffusion-generated deepfake images remains an open problem. Current detection methods fail against an adversary who adds imperceptible adversarial perturbations to the deepfake to evade detection. In this work, we propose Disjoint Diffusion Deepfake Detection (D4), a deepfake detector designed to improve black-box adversarial robustness beyond de facto solutions such as adversarial training. D4 uses an ensemble of models over disjoint subsets of the frequency spectrum to significantly improve adversarial robustness. Our key insight is to leverage a redundancy in the frequency domain and apply a saliency partitioning technique to disjointly distribute frequency components across multiple models. We formally prove that these disjoint ensembles lead to a reduction in the dimensionality of the input subspace where adversarial deepfakes lie, thereby making adversarial deepfakes harder to find for black-box attacks. We then empirically validate the D4 method against several black-box attacks and find that D4 significantly outperforms existing state-of-the-art defenses applied to diffusion-generated deepfake detection. We also demonstrate that D4 provides robustness against adversarial deepfakes from unseen data distributions as well as unseen generative techniques.