Faulkner, Ryan
Scaling Instructable Agents Across Many Simulated Worlds
SIMA Team, null, Raad, Maria Abi, Ahuja, Arun, Barros, Catarina, Besse, Frederic, Bolt, Andrew, Bolton, Adrian, Brownfield, Bethanie, Buttimore, Gavin, Cant, Max, Chakera, Sarah, Chan, Stephanie C. Y., Clune, Jeff, Collister, Adrian, Copeman, Vikki, Cullum, Alex, Dasgupta, Ishita, de Cesare, Dario, Di Trapani, Julia, Donchev, Yani, Dunleavy, Emma, Engelcke, Martin, Faulkner, Ryan, Garcia, Frankie, Gbadamosi, Charles, Gong, Zhitao, Gonzales, Lucy, Gupta, Kshitij, Gregor, Karol, Hallingstad, Arne Olav, Harley, Tim, Haves, Sam, Hill, Felix, Hirst, Ed, Hudson, Drew A., Hudson, Jony, Hughes-Fitt, Steph, Rezende, Danilo J., Jasarevic, Mimi, Kampis, Laura, Ke, Rosemary, Keck, Thomas, Kim, Junkyung, Knagg, Oscar, Kopparapu, Kavya, Lampinen, Andrew, Legg, Shane, Lerchner, Alexander, Limont, Marjorie, Liu, Yulan, Loks-Thompson, Maria, Marino, Joseph, Cussons, Kathryn Martin, Matthey, Loic, Mcloughlin, Siobhan, Mendolicchio, Piermaria, Merzic, Hamza, Mitenkova, Anna, Moufarek, Alexandre, Oliveira, Valeria, Oliveira, Yanko, Openshaw, Hannah, Pan, Renke, Pappu, Aneesh, Platonov, Alex, Purkiss, Ollie, Reichert, David, Reid, John, Richemond, Pierre Harvey, Roberts, Tyson, Ruscoe, Giles, Elias, Jaume Sanchez, Sandars, Tasha, Sawyer, Daniel P., Scholtes, Tim, Simmons, Guy, Slater, Daniel, Soyer, Hubert, Strathmann, Heiko, Stys, Peter, Tam, Allison C., Teplyashin, Denis, Terzi, Tayfun, Vercelli, Davide, Vujatovic, Bojan, Wainwright, Marcus, Wang, Jane X., Wang, Zhengdong, Wierstra, Daan, Williams, Duncan, Wong, Nathaniel, York, Sarah, Young, Nick
Building embodied AI systems that can follow arbitrary language instructions in any 3D environment is a key challenge for creating general AI. Accomplishing this goal requires learning to ground language in perception and embodied actions, in order to accomplish complex tasks. The Scalable, Instructable, Multiworld Agent (SIMA) project tackles this by training agents to follow free-form instructions across a diverse range of virtual 3D environments, including curated research environments as well as open-ended, commercial video games. Our goal is to develop an instructable agent that can accomplish anything a human can do in any simulated 3D environment. Our approach focuses on language-driven generality while imposing minimal assumptions. Our agents interact with environments in real-time using a generic, human-like interface: the inputs are image observations and language instructions and the outputs are keyboard-and-mouse actions. This general approach is challenging, but it allows agents to ground language across many visually complex and semantically rich environments while also allowing us to readily run agents in new environments. In this paper we describe our motivation and goal, the initial progress we have made, and promising preliminary results on several diverse research environments and a variety of commercial video games.
Rapid Task-Solving in Novel Environments
Ritter, Sam, Faulkner, Ryan, Sartran, Laurent, Santoro, Adam, Botvinick, Matt, Raposo, David
When thrust into an unfamiliar environment and charged with solving a series of tasks, an effective agent should (1) leverage prior knowledge to solve its current task while (2) efficiently exploring to gather knowledge for use in future tasks, and then (3) plan using that knowledge when faced with new tasks in that same environment. We introduce two domains for conducting research on this challenge, and find that state-of-the-art deep reinforcement learning (RL) agents fail to plan in novel environments. We develop a recursive implicit planning module that operates over episodic memories, and show that the resulting deep-RL agent is able to explore and plan in novel environments, outperforming the nearest baseline by factors of 2-3 across the two domains. We find evidence that our module (1) learned to execute a sensible information-propagating algorithm and (2) generalizes to situations beyond its training experience.
Generalization of Reinforcement Learners with Working and Episodic Memory
Fortunato, Meire, Tan, Melissa, Faulkner, Ryan, Hansen, Steven, Badia, Adriร Puigdomรจnech, Buttimore, Gavin, Deck, Charlie, Leibo, Joel Z, Blundell, Charles
Memory is an important aspect of intelligence and plays a role in many deep reinforcement learning models. However, little progress has been made in understanding when specific memory systems help more than others and how well they generalize. The field also has yet to see a prevalent consistent and rigorous approach for evaluating agent performance on holdout data. In this paper, we aim to develop a comprehensive methodology to test different kinds of memory in an agent and assess how well the agent can apply what it learns in training to a holdout set that differs from the training set along dimensions that we suggest are relevant for evaluating memory-specific generalization. To that end, we first construct a diverse set of memory tasks that allow us to evaluate test-time generalization across multiple dimensions. Second, we develop and perform multiple ablations on an agent architecture that combines multiple memory systems, observe its baseline models, and investigate its performance against the task suite.
OpenSpiel: A Framework for Reinforcement Learning in Games
Lanctot, Marc, Lockhart, Edward, Lespiau, Jean-Baptiste, Zambaldi, Vinicius, Upadhyay, Satyaki, Pรฉrolat, Julien, Srinivasan, Sriram, Timbers, Finbarr, Tuyls, Karl, Omidshafiei, Shayegan, Hennes, Daniel, Morrill, Dustin, Muller, Paul, Ewalds, Timo, Faulkner, Ryan, Kramรกr, Jรกnos, De Vylder, Bart, Saeta, Brennan, Bradbury, James, Ding, David, Borgeaud, Sebastian, Lai, Matthew, Schrittwieser, Julian, Anthony, Thomas, Hughes, Edward, Danihelka, Ivo, Ryan-Davis, Jonah
OpenSpiel is a collection of environments and algorithms for research in general reinforcement learning and search/planning in games. OpenSpiel supports n-player (single- and multi- agent) zero-sum, cooperative and general-sum, one-shot and sequential, strictly turn-taking and simultaneous-move, perfect and imperfect information games, as well as traditional multiagent environments such as (partially- and fully- observable) grid worlds and social dilemmas. OpenSpiel also includes tools to analyze learning dynamics and other common evaluation metrics. This document serves both as an overview of the code base and an introduction to the terminology, core concepts, and algorithms across the fields of reinforcement learning, computational game theory, and search.
Interval timing in deep reinforcement learning agents
Deverett, Ben, Faulkner, Ryan, Fortunato, Meire, Wayne, Greg, Leibo, Joel Z.
The measurement of time is central to intelligent behavior. We know that both animals and artificial agents can successfully use temporal dependencies to select actions. In artificial agents, little work has directly addressed (1) which architectural components are necessary for successful development of this ability, (2) how this timing ability comes to be represented in the units and actions of the agent, and (3) whether the resulting behavior of the system converges on solutions similar to those of biology. Here we studied interval timing abilities in deep reinforcement learning agents trained end-to-end on an interval reproduction paradigm inspired by experimental literature on mechanisms of timing. We characterize the strategies developed by recurrent and feedforward agents, which both succeed at temporal reproduction using distinct mechanisms, some of which bear specific and intriguing similarities to biological systems. These findings advance our understanding of how agents come to represent time, and they highlight the value of experimentally inspired approaches to characterizing agent abilities.
Relational recurrent neural networks
Santoro, Adam, Faulkner, Ryan, Raposo, David, Rae, Jack, Chrzanowski, Mike, Weber, Theophane, Wierstra, Daan, Vinyals, Oriol, Pascanu, Razvan, Lillicrap, Timothy
Memory-based neural networks model temporal data by leveraging an ability to remember information for long periods. It is unclear, however, whether they also have an ability to perform complex relational reasoning with the information they remember. Here, we first confirm our intuitions that standard memory architectures may struggle at tasks that heavily involve an understanding of the ways in which entities are connected -- i.e., tasks involving relational reasoning. We then improve upon these deficits by using a new memory module -- a Relational Memory Core (RMC) -- which employs multi-head dot product attention to allow memories to interact. Finally, we test the RMC on a suite of tasks that may profit from more capable relational reasoning across sequential information, and show large gains in RL domains (BoxWorld & Mini PacMan), program evaluation, and language modeling, achieving state-of-the-art results on the WikiText-103, Project Gutenberg, and GigaWord datasets.
Relational recurrent neural networks
Santoro, Adam, Faulkner, Ryan, Raposo, David, Rae, Jack, Chrzanowski, Mike, Weber, Theophane, Wierstra, Daan, Vinyals, Oriol, Pascanu, Razvan, Lillicrap, Timothy
Memory-based neural networks model temporal data by leveraging an ability to remember information for long periods. It is unclear, however, whether they also have an ability to perform complex relational reasoning with the information they remember. Here, we first confirm our intuitions that standard memory architectures may struggle at tasks that heavily involve an understanding of the ways in which entities are connected -- i.e., tasks involving relational reasoning. We then improve upon these deficits by using a new memory module -- a Relational Memory Core (RMC) -- which employs multi-head dot product attention to allow memories to interact. Finally, we test the RMC on a suite of tasks that may profit from more capable relational reasoning across sequential information, and show large gains in RL domains (BoxWorld & Mini PacMan), program evaluation, and language modeling, achieving state-of-the-art results on the WikiText-103, Project Gutenberg, and GigaWord datasets.
Relational recurrent neural networks
Santoro, Adam, Faulkner, Ryan, Raposo, David, Rae, Jack, Chrzanowski, Mike, Weber, Theophane, Wierstra, Daan, Vinyals, Oriol, Pascanu, Razvan, Lillicrap, Timothy
Memory-based neural networks model temporal data by leveraging an ability to remember information for long periods. It is unclear, however, whether they also have an ability to perform complex relational reasoning with the information they remember. Here, we first confirm our intuitions that standard memory architectures may struggle at tasks that heavily involve an understanding of the ways in which entities are connected -- i.e., tasks involving relational reasoning. We then improve upon these deficits by using a new memory module -- a \textit{Relational Memory Core} (RMC) -- which employs multi-head dot product attention to allow memories to interact. Finally, we test the RMC on a suite of tasks that may profit from more capable relational reasoning across sequential information, and show large gains in RL domains (e.g. Mini PacMan), program evaluation, and language modeling, achieving state-of-the-art results on the WikiText-103, Project Gutenberg, and GigaWord datasets.
Relational inductive biases, deep learning, and graph networks
Battaglia, Peter W., Hamrick, Jessica B., Bapst, Victor, Sanchez-Gonzalez, Alvaro, Zambaldi, Vinicius, Malinowski, Mateusz, Tacchetti, Andrea, Raposo, David, Santoro, Adam, Faulkner, Ryan, Gulcehre, Caglar, Song, Francis, Ballard, Andrew, Gilmer, Justin, Dahl, George, Vaswani, Ashish, Allen, Kelsey, Nash, Charles, Langston, Victoria, Dyer, Chris, Heess, Nicolas, Wierstra, Daan, Kohli, Pushmeet, Botvinick, Matt, Vinyals, Oriol, Li, Yujia, Pascanu, Razvan
Artificial intelligence (AI) has undergone a renaissance recently, making major progress in key domains such as vision, language, control, and decision-making. This has been due, in part, to cheap data and cheap compute resources, which have fit the natural strengths of deep learning. However, many defining characteristics of human intelligence, which developed under much different pressures, remain out of reach for current approaches. In particular, generalizing beyond one's experiences--a hallmark of human intelligence from infancy--remains a formidable challenge for modern AI. The following is part position paper, part review, and part unification. We argue that combinatorial generalization must be a top priority for AI to achieve human-like abilities, and that structured representations and computations are key to realizing this objective. Just as biology uses nature and nurture cooperatively, we reject the false choice between "hand-engineering" and "end-to-end" learning, and instead advocate for an approach which benefits from their complementary strengths. We explore how using relational inductive biases within deep learning architectures can facilitate learning about entities, relations, and rules for composing them. We present a new building block for the AI toolkit with a strong relational inductive bias--the graph network--which generalizes and extends various approaches for neural networks that operate on graphs, and provides a straightforward interface for manipulating structured knowledge and producing structured behaviors. We discuss how graph networks can support relational reasoning and combinatorial generalization, laying the foundation for more sophisticated, interpretable, and flexible patterns of reasoning.
Dyna Planning using a Feature Based Generative Model
Faulkner, Ryan, Precup, Doina
Dyna-style reinforcement learning is a powerful approach for problems where not much real data is available. The main idea is to supplement real trajectories, or sequences of sampled states over time, with simulated ones sampled from a learned model of the environment. However, in large state spaces, the problem of learning a good generative model of the environment has been open so far. We propose to use deep belief networks to learn an environment model for use in Dyna. We present our approach and validate it empirically on problems where the state observations consist of images. Our results demonstrate that using deep belief networks, which are full generative models, significantly outperforms the use of linear expectation models, proposed in Sutton et al. (2008)