Goto

Collaborating Authors

 Farsi, Farhan


ParsiPy: NLP Toolkit for Historical Persian Texts in Python

arXiv.org Artificial Intelligence

The study of historical languages presents unique challenges due to their complex orthographic systems, fragmentary textual evidence, and the absence of standardized digital representations of text in those languages. Tackling these challenges needs special NLP digital tools to handle phonetic transcriptions and analyze ancient texts. This work introduces ParsiPy, an NLP toolkit designed to facilitate the analysis of historical Persian languages by offering modules for tokenization, lemmatization, part-of-speech tagging, phoneme-to-transliteration conversion, and word embedding. We demonstrate the utility of our toolkit through the processing of Parsig (Middle Persian) texts, highlighting its potential for expanding computational methods in the study of historical languages. Through this work, we contribute to computational philology, offering tools that can be adapted for the broader study of ancient texts and their digital preservation.


RFBES at SemEval-2024 Task 8: Investigating Syntactic and Semantic Features for Distinguishing AI-Generated and Human-Written Texts

arXiv.org Artificial Intelligence

Nowadays, the usage of Large Language Models (LLMs) has increased, and LLMs have been used to generate texts in different languages and for different tasks. Additionally, due to the participation of remarkable companies such as Google and OpenAI, LLMs are now more accessible, and people can easily use them. However, an important issue is how we can detect AI-generated texts from human-written ones. In this article, we have investigated the problem of AI-generated text detection from two different aspects: semantics and syntax. Finally, we presented an AI model that can distinguish AI-generated texts from human-written ones with high accuracy on both multilingual and monolingual tasks using the M4 dataset. According to our results, using a semantic approach would be more helpful for detection. However, there is a lot of room for improvement in the syntactic approach, and it would be a good approach for future work.