Goto

Collaborating Authors

 Farooq, Bilal


A Coalition Game for On-demand Multi-modal 3D Automated Delivery System

arXiv.org Artificial Intelligence

We introduce a multi-modal autonomous delivery optimization framework as a coalition game for a fleet of UAVs and ADRs operating in two overlaying networks to address last-mile delivery in urban environments, including high-density areas, road-based routing, and real-world operational challenges. The problem is defined as multiple depot pickup and delivery with time windows constrained over operational restrictions, such as vehicle battery limitation, precedence time window, and building obstruction. Subsequently, the coalition game theory is applied to investigate cooperation structures among the modes to capture how strategic collaboration among vehicles can improve overall routing efficiency. To do so, a generalized reinforcement learning model is designed to evaluate the cost-sharing and allocation to different coalitions for which sub-additive property and non-empty core exist. Our methodology leverages an end-to-end deep multi-agent policy gradient method augmented by a novel spatio-temporal adjacency neighbourhood graph attention network and transformer architecture using a heterogeneous edge-enhanced attention model. Conducting several numerical experiments on last-mile delivery applications, the result from the case study in the city of Mississauga shows that despite the incorporation of an extensive network in the graph for two modes and a complex training structure, the model addresses realistic operational constraints and achieves high-quality solutions compared with the existing transformer-based and heuristics methods and can perform well on non-homogeneous data distribution, generalizes well on the different scale and configuration, and demonstrate a robust performance under stochastic scenarios subject to wind speed and direction.


A deep causal inference model for fully-interpretable travel behaviour analysis

arXiv.org Artificial Intelligence

Transport policy assessment often involves causal questions, yet the causal inference capabilities of traditional travel behavioural models are at best limited. We present the deep CAusal infeRence mOdel for traveL behavIour aNAlysis (CAROLINA), a framework that explicitly models causality in travel behaviour, enhances predictive accuracy, and maintains interpretability by leveraging causal inference, deep learning, and traditional discrete choice modelling. Within this framework, we introduce a Generative Counterfactual model for forecasting human behaviour by adapting the Normalizing Flow method. Through the case studies of virtual reality-based pedestrian crossing behaviour, revealed preference travel behaviour from London, and synthetic data, we demonstrate the effectiveness of our proposed models in uncovering causal relationships, prediction accuracy, and assessing policy interventions. Our results show that intervention mechanisms that can reduce pedestrian stress levels lead to a 38.5% increase in individuals experiencing shorter waiting times. Reducing the travel distances in London results in a 47% increase in sustainable travel modes.


Attention-LSTM for Multivariate Traffic State Prediction on Rural Roads

arXiv.org Artificial Intelligence

Accurate traffic volume and speed prediction have a wide range of applications in transportation. It can result in useful and timely information for both travellers and transportation decision-makers. In this study, an Attention based Long Sort-Term Memory model (A-LSTM) is proposed to simultaneously predict traffic volume and speed in a critical rural road segmentation which connects Tehran to Chalus, the most tourist destination city in Iran. Moreover, this study compares the results of the A-LSTM model with the Long Short-Term Memory (LSTM) model. Both models show acceptable performance in predicting speed and flow. However, the A-LSTM model outperforms the LSTM in 5 and 15-minute intervals. In contrast, there is no meaningful difference between the two models for the 30-minute time interval. By comparing the performance of the models based on different time horizons, the 15-minute horizon model outperforms the others by reaching the lowest Mean Square Error (MSE) loss of 0.0032, followed by the 30 and 5-minutes horizons with 0.004 and 0.0051, respectively. In addition, this study compares the results of the models based on two transformations of temporal categorical input variables, one-hot or cyclic, for the 15-minute time interval. The results demonstrate that both LSTM and A-LSTM with cyclic feature encoding outperform those with one-hot feature encoding.


Debiased machine learning for estimating the causal effect of urban traffic on pedestrian crossing behaviour

arXiv.org Artificial Intelligence

Before the transition of AVs to urban roads and subsequently unprecedented changes in traffic conditions, evaluation of transportation policies and futuristic road design related to pedestrian crossing behavior is of vital importance. Recent studies analyzed the non-causal impact of various variables on pedestrian waiting time in the presence of AVs. However, we mainly investigate the causal effect of traffic density on pedestrian waiting time. We develop a Double/Debiased Machine Learning (DML) model in which the impact of confounders variable influencing both a policy and an outcome of interest is addressed, resulting in unbiased policy evaluation. Furthermore, we try to analyze the effect of traffic density by developing a copula-based joint model of two main components of pedestrian crossing behavior, pedestrian stress level and waiting time. The copula approach has been widely used in the literature, for addressing self-selection problems, which can be classified as a causality analysis in travel behavior modeling. The results obtained from copula approach and DML are compared based on the effect of traffic density. In DML model structure, the standard error term of density parameter is lower than copula approach and the confidence interval is considerably more reliable. In addition, despite the similar sign of effect, the copula approach estimates the effect of traffic density lower than DML, due to the spurious effect of confounders. In short, the DML model structure can flexibly adjust the impact of confounders by using machine learning algorithms and is more reliable for planning future policies.


Robustness Analysis of Deep Learning Models for Population Synthesis

arXiv.org Artificial Intelligence

Deep generative models have become useful for synthetic data generation, particularly population synthesis. The models implicitly learn the probability distribution of a dataset and can draw samples from a distribution. Several models have been proposed, but their performance is only tested on a single cross-sectional sample. The implementation of population synthesis on single datasets is seen as a drawback that needs further studies to explore the robustness of the models on multiple datasets. While comparing with the real data can increase trust and interpretability of the models, techniques to evaluate deep generative models' robustness for population synthesis remain underexplored. In this study, we present bootstrap confidence interval for the deep generative models, an approach that computes efficient confidence intervals for mean errors predictions to evaluate the robustness of the models to multiple datasets. Specifically, we adopt the tabular-based Composite Travel Generative Adversarial Network (CTGAN) and Variational Autoencoder (VAE), to estimate the distribution of the population, by generating agents that have tabular data using several samples over time from the same study area. The models are implemented on multiple travel diaries of Montreal Origin- Destination Survey of 2008, 2013, and 2018 and compare the predictive performance under varying sample sizes from multiple surveys. Results show that the predictive errors of CTGAN have narrower confidence intervals indicating its robustness to multiple datasets of the varying sample sizes when compared to VAE. Again, the evaluation of model robustness against varying sample size shows a minimal decrease in model performance with decrease in sample size. This study directly supports agent-based modelling by enabling finer synthetic generation of populations in a reliable environment.


On the Initial Behavior Monitoring Issues in Federated Learning

arXiv.org Artificial Intelligence

In Federated Learning (FL), a group of workers participate to build a global model under the coordination of one node, the chief. Regarding the cybersecurity of FL, some attacks aim at injecting the fabricated local model updates into the system. Some defenses are based on malicious worker detection and behavioral pattern analysis. In this context, without timely and dynamic monitoring methods, the chief cannot detect and remove the malicious or unreliable workers from the system. Our work emphasize the urgency to prepare the federated learning process for monitoring and eventually behavioral pattern analysis. We study the information inside the learning process in the early stages of training, propose a monitoring process and evaluate the monitoring period required. The aim is to analyse at what time is it appropriate to start the detection algorithm in order to remove the malicious or unreliable workers from the system and optimise the defense mechanism deployment. We tested our strategy on a behavioral pattern analysis defense applied to the FL process of different benchmark systems for text and image classification. Our results show that the monitoring process lowers false positives and false negatives and consequently increases system efficiency by enabling the distributed learning system to achieve better performance in the early stage of training.


Untargeted Poisoning Attack Detection in Federated Learning via Behavior Attestation

arXiv.org Artificial Intelligence

Federated Learning (FL) is a paradigm in Machine Learning (ML) that addresses data privacy, security, access rights and access to heterogeneous information issues by training a global model using distributed nodes. Despite its advantages, there is an increased potential for cyberattacks on FL-based ML techniques that can undermine the benefits. Model-poisoning attacks on FL target the availability of the model. The adversarial objective is to disrupt the training. We propose attestedFL, a defense mechanism that monitors the training of individual nodes through state persistence in order to detect a malicious worker. A fine-grained assessment of the history of the worker permits the evaluation of its behavior in time and results in innovative detection strategies. We present three lines of defense that aim at assessing if the worker is reliable by observing if the node is really training, advancing towards a goal. Our defense exposes an attacker's malicious behavior and removes unreliable nodes from the aggregation process so that the FL process converge faster. Through extensive evaluations and against various adversarial settings, attestedFL increased the accuracy of the model between 12% to 58% under different scenarios such as attacks performed at different stages of convergence, attackers colluding and continuous attacks.


Smart Mobility Ontology: Current Trends and Future Directions

arXiv.org Artificial Intelligence

Ontology, as a discipline of philosophy, explains the nature of existence and has its roots in Aristotle and Plato studies on "metaphysics" (Welty and Guarino, 2001). However, the word ontology originated from two Greek words: ontos (being) and logos (word), and conceived for the first time during the Sixteen century by German philosophers (Welty and Guarino, 2001). From then till the mid-twentieth, ontology evolved mainly as a branch of philosophy. However, with the advent of Artificial Intelligence since the 1950s, researchers perceived the necessity of ontology to describe a new world of intelligent systems (Welty and Guarino, 2001). Moreover, with the development of the World Wide Web in the 1990s, ontology development got to be common among different domain specialists to define and share the concepts and entities in their fields on the Internet (Noy et al., 2001). During the last three decades, ontology development studies have evolved and shifted from theoretical issues of ontology to practical implications of the use of ontology in real-world, large-scale applications (Noy et al., 2001). Nowadays, ontology development focuses mainly on defining machine interpretable concepts and their relationships in a domain. However, ontology development also pursues other goals, such as providing a common conceptualization of the domain on which different experts agree, (Mรฉtral and Cutting-Decelle, 2011) and enable them to reuse the domain knowledge (Noy et al., 2001). It also enables researchers to easily analyze the domain knowledge and eloquently express the domain assumptions.


Greenhouse Gas Emission Prediction on Road Network using Deep Sequence Learning

arXiv.org Machine Learning

Mitigating the substantial undesirable impact of transportation systems on the environment is paramount. Thus, predicting Greenhouse Gas (GHG) emissions is one of the profound topics, especially with the emergence of intelligent transportation systems (ITS). We develop a deep learning framework to predict link-level GHG emission rate (ER) (in CO2eq gram/second) based on the most representative predictors, such as speed, density, and the GHG ER of previous time steps. In particular, various specifications of the long-short term memory (LSTM) networks with exogenous variables are examined and compared with clustering and the autoregressive integrated moving average (ARIMA) model with exogenous variables. The downtown Toronto road network is used as the case study and highly detailed data are synthesized using a calibrated traffic microsimulation and MOVES. It is found that LSTM specification with speed, density, GHG ER, and in-links speed from three previous minutes performs the best while adopting 2 hidden layers and when the hyper-parameters are systematically tuned. Adopting a 30 second updating interval improves slightly the correlation between true and predicted GHG ERs, but contributes negatively to the prediction accuracy as reflected on the increased root mean square error (RMSE) value. Efficiently predicting GHG emissions at a higher frequency with lower data requirements will pave the way to non-myopic eco-routing on large-scale road networks {to alleviate the adverse impact on the global warming


Prediction of Traffic Flow via Connected Vehicles

arXiv.org Artificial Intelligence

We propose a Short-term Traffic flow Prediction (STP) framework so that transportation authorities take early actions to control flow and prevent congestion. We anticipate flow at future time frames on a target road segment based on historical flow data and innovative features such as real time feeds and trajectory data provided by Connected Vehicles (CV) technology. To cope with the fact that existing approaches do not adapt to variation in traffic, we show how this novel approach allows advanced modelling by integrating into the forecasting of flow, the impact of the various events that CV realistically encountered on segments along their trajectory. We solve the STP problem with a Deep Neural Networks (DNN) in a multitask learning setting augmented by input from CV. Results show that our approach, namely MTL-CV, with an average Root-Mean-Square Error (RMSE) of 0.052, outperforms state-of-the-art ARIMA time series (RMSE of 0.255) and baseline classifiers (RMSE of 0.122). Compared to single task learning with Artificial Neural Network (ANN), ANN had a lower performance, 0.113 for RMSE, than MTL-CV. MTL-CV learned historical similarities between segments, in contrast to using direct historical trends in the measure, because trends may not exist in the measure but do in the similarities.