Goto

Collaborating Authors

 Farid, Alec


Foundation Models for Rapid Autonomy Validation

arXiv.org Artificial Intelligence

We are motivated by the problem of autonomous vehicle performance validation. A key challenge is that an autonomous vehicle requires testing in every kind of driving scenario it could encounter, including rare events, to provide a strong case for safety and show there is no edge-case pathological behavior. Autonomous vehicle companies rely on potentially millions of miles driven in realistic simulation to expose the driving stack to enough miles to estimate rates and severity of collisions. To address scalability and coverage, we propose the use of a behavior foundation model, specifically a masked autoencoder (MAE), trained to reconstruct driving scenarios. We leverage the foundation model in two complementary ways: we (i) use the learned embedding space to group qualitatively similar scenarios together and (ii) fine-tune the model to label scenario difficulty based on the likelihood of a collision upon re-simulation. We use the difficulty scoring as importance weighting for the groups of scenarios. The result is an approach which can more rapidly estimate the rates and severity of collisions by prioritizing hard scenarios while ensuring exposure to every kind of driving scenario.


Task-Driven Detection of Distribution Shifts with Statistical Guarantees for Robot Learning

arXiv.org Artificial Intelligence

Our goal is to perform out-of-distribution (OOD) detection, i.e., to detect when a robot is operating in environments drawn from a different distribution than the ones used to train the robot. We leverage Probably Approximately Correct (PAC)-Bayes theory to train a policy with a guaranteed bound on performance on the training distribution. Our idea for OOD detection relies on the following intuition: violation of the performance bound on test environments provides evidence that the robot is operating OOD. We formalize this via statistical techniques based on p-values and concentration inequalities. The approach provides guaranteed confidence bounds on OOD detection including bounds on both the false positive and false negative rates of the detector and is task-driven and only sensitive to changes that impact the robot's performance. We demonstrate our approach in simulation and hardware for a grasping task using objects with unfamiliar shapes or poses and a drone performing vision-based obstacle avoidance in environments with wind disturbances and varied obstacle densities. Our examples demonstrate that we can perform task-driven OOD detection within just a handful of trials.


Task-Relevant Failure Detection for Trajectory Predictors in Autonomous Vehicles

arXiv.org Artificial Intelligence

In modern autonomy stacks, prediction modules are paramount to planning motions in the presence of other mobile agents. However, failures in prediction modules can mislead the downstream planner into making unsafe decisions. Indeed, the high uncertainty inherent to the task of trajectory forecasting ensures that such mispredictions occur frequently. Motivated by the need to improve safety of autonomous vehicles without compromising on their performance, we develop a probabilistic run-time monitor that detects when a "harmful" prediction failure occurs, i.e., a task-relevant failure detector. We achieve this by propagating trajectory prediction errors to the planning cost to reason about their impact on the AV. Furthermore, our detector comes equipped with performance measures on the false-positive and the false-negative rate and allows for data-free calibration. In our experiments we compared our detector with various others and found that our detector has the highest area under the receiver operator characteristic curve.


PAC-BUS: Meta-Learning Bounds via PAC-Bayes and Uniform Stability

arXiv.org Artificial Intelligence

We are motivated by the problem of providing strong generalization guarantees in the context of meta-learning. Existing generalization bounds are either challenging to evaluate or provide vacuous guarantees in even relatively simple settings. We derive a probably approximately correct (PAC) bound for gradient-based meta-learning using two different generalization frameworks in order to deal with the qualitatively different challenges of generalization at the "base" and "meta" levels. We employ bounds for uniformly stable algorithms at the base level and bounds from the PAC-Bayes framework at the meta level. The result is a PAC-bound that is tighter when the base learner adapts quickly, which is precisely the goal of meta-learning. We show that our bound provides a tighter guarantee than other bounds on a toy non-convex problem on the unit sphere and a text-based classification example. We also present a practical regularization scheme motivated by the bound in settings where the bound is loose and demonstrate improved performance over baseline techniques.