Farhansyah, Mohammad Rifqi
Crowdsource, Crawl, or Generate? Creating SEA-VL, a Multicultural Vision-Language Dataset for Southeast Asia
Cahyawijaya, Samuel, Lovenia, Holy, Moniz, Joel Ruben Antony, Wong, Tack Hwa, Farhansyah, Mohammad Rifqi, Maung, Thant Thiri, Hudi, Frederikus, Anugraha, David, Habibi, Muhammad Ravi Shulthan, Qorib, Muhammad Reza, Agarwal, Amit, Imperial, Joseph Marvin, Patel, Hitesh Laxmichand, Feliren, Vicky, Nasution, Bahrul Ilmi, Rufino, Manuel Antonio, Winata, Genta Indra, Rajagede, Rian Adam, Catalan, Carlos Rafael, Imam, Mohamed Fazli, Pattnayak, Priyaranjan, Pranida, Salsabila Zahirah, Pratama, Kevin, Bangera, Yeshil, Na-Thalang, Adisai, Monderin, Patricia Nicole, Song, Yueqi, Simon, Christian, Ng, Lynnette Hui Xian, Sapan, Richardy Lobo', Rafi, Taki Hasan, Wang, Bin, Supryadi, null, Veerakanjana, Kanyakorn, Ittichaiwong, Piyalitt, Roque, Matthew Theodore, Vincentio, Karissa, Kreangphet, Takdanai, Artkaew, Phakphum, Palgunadi, Kadek Hendrawan, Yu, Yanzhi, Hastuti, Rochana Prih, Nixon, William, Bangera, Mithil, Lim, Adrian Xuan Wei, Khine, Aye Hninn, Zhafran, Hanif Muhammad, Ferdinan, Teddy, Izzani, Audra Aurora, Singh, Ayushman, Evan, null, Krito, Jauza Akbar, Anugraha, Michael, Ilasariya, Fenal Ashokbhai, Li, Haochen, Daniswara, John Amadeo, Tjiaranata, Filbert Aurelian, Yulianrifat, Eryawan Presma, Udomcharoenchaikit, Can, Ansori, Fadil Risdian, Ihsani, Mahardika Krisna, Nguyen, Giang, Barik, Anab Maulana, Velasco, Dan John, Genadi, Rifo Ahmad, Saha, Saptarshi, Wei, Chengwei, Flores, Isaiah, Chen, Kenneth Ko Han, Santos, Anjela Gail, Lim, Wan Shen, Phyo, Kaung Si, Santos, Tim, Dwiastuti, Meisyarah, Luo, Jiayun, Cruz, Jan Christian Blaise, Hee, Ming Shan, Hanif, Ikhlasul Akmal, Hakim, M. Alif Al, Sya'ban, Muhammad Rizky, Kerdthaisong, Kun, Miranda, Lester James V., Koto, Fajri, Fatyanosa, Tirana Noor, Aji, Alham Fikri, Rosal, Jostin Jerico, Kevin, Jun, Wijaya, Robert, Kampman, Onno P., Zhang, Ruochen, Karlsson, Bรถrje F., Limkonchotiwat, Peerat
Southeast Asia (SEA) is a region of extraordinary linguistic and cultural diversity, yet it remains significantly underrepresented in vision-language (VL) research. This often results in artificial intelligence (AI) models that fail to capture SEA cultural nuances. To fill this gap, we present SEA-VL, an open-source initiative dedicated to developing high-quality, culturally relevant data for SEA languages. By involving contributors from SEA countries, SEA-VL aims to ensure better cultural relevance and diversity, fostering greater inclusivity of underrepresented languages in VL research. Beyond crowdsourcing, our initiative goes one step further in the exploration of the automatic collection of culturally relevant images through crawling and image generation. First, we find that image crawling achieves approximately ~85% cultural relevance while being more cost- and time-efficient than crowdsourcing. Second, despite the substantial progress in generative vision models, synthetic images remain unreliable in accurately reflecting SEA cultures. The generated images often fail to reflect the nuanced traditions and cultural contexts of the region. Collectively, we gather 1.28M SEA culturally-relevant images, more than 50 times larger than other existing datasets. Through SEA-VL, we aim to bridge the representation gap in SEA, fostering the development of more inclusive AI systems that authentically represent diverse cultures across SEA.
Do Language Models Understand Honorific Systems in Javanese?
Farhansyah, Mohammad Rifqi, Darmawan, Iwan, Kusumawardhana, Adryan, Winata, Genta Indra, Aji, Alham Fikri, Wijaya, Derry Tanti
The Javanese language features a complex system of honorifics that vary according to the social status of the speaker, listener, and referent. Despite its cultural and linguistic significance, there has been limited progress in developing a comprehensive corpus to capture these variations for natural language processing (NLP) tasks. In this paper, we present Unggah-Ungguh, a carefully curated dataset designed to encapsulate the nuances of Unggah-Ungguh Basa, the Javanese speech etiquette framework that dictates the choice of words and phrases based on social hierarchy and context. Using Unggah-Ungguh, we assess the ability of language models (LMs) to process various levels of Javanese honorifics through classification and machine translation tasks. To further evaluate cross-lingual LMs, we conduct machine translation experiments between Javanese (at specific honorific levels) and Indonesian. Additionally, we explore whether LMs can generate contextually appropriate Javanese honorifics in conversation tasks, where the honorific usage should align with the social role and contextual cues. Our findings indicate that current LMs struggle with most honorific levels, exhibitinga bias toward certain honorific tiers.
DriveThru: a Document Extraction Platform and Benchmark Datasets for Indonesian Local Language Archives
Farhansyah, Mohammad Rifqi, Johari, Muhammad Zuhdi Fikri, Amiral, Afinzaki, Purwarianti, Ayu, Yuana, Kumara Ari, Wijaya, Derry Tanti
Indonesia is one of the most diverse countries linguistically. However, despite this linguistic diversity, Indonesian languages remain underrepresented in Natural Language Processing (NLP) research and technologies. In the past two years, several efforts have been conducted to construct NLP resources for Indonesian languages. However, most of these efforts have been focused on creating manual resources thus difficult to scale to more languages. Although many Indonesian languages do not have a web presence, locally there are resources that document these languages well in printed forms such as books, magazines, and newspapers. Digitizing these existing resources will enable scaling of Indonesian language resource construction to many more languages. In this paper, we propose an alternative method of creating datasets by digitizing documents, which have not previously been used to build digital language resources in Indonesia. DriveThru is a platform for extracting document content utilizing Optical Character Recognition (OCR) techniques in its system to provide language resource building with less manual effort and cost. This paper also studies the utility of current state-of-the-art LLM for post-OCR correction to show the capability of increasing the character accuracy rate (CAR) and word accuracy rate (WAR) compared to off-the-shelf OCR.