Farahmand, Ebrahim
AttenGluco: Multimodal Transformer-Based Blood Glucose Forecasting on AI-READI Dataset
Farahmand, Ebrahim, Azghan, Reza Rahimi, Chatrudi, Nooshin Taheri, Kim, Eric, Gudur, Gautham Krishna, Thomaz, Edison, Pedrielli, Giulia, Turaga, Pavan, Ghasemzadeh, Hassan
Diabetes is a chronic metabolic disorder characterized by persistently high blood glucose levels (BGLs), leading to severe complications such as cardiovascular disease, neuropathy, and retinopathy. Predicting BGLs enables patients to maintain glucose levels within a safe range and allows caregivers to take proactive measures through lifestyle modifications. Continuous Glucose Monitoring (CGM) systems provide real-time tracking, offering a valuable tool for monitoring BGLs. However, accurately forecasting BGLs remains challenging due to fluctuations due to physical activity, diet, and other factors. Recent deep learning models show promise in improving BGL prediction. Nonetheless, forecasting BGLs accurately from multimodal, irregularly sampled data over long prediction horizons remains a challenging research problem. In this paper, we propose AttenGluco, a multimodal Transformer-based framework for long-term blood glucose prediction. AttenGluco employs cross-attention to effectively integrate CGM and activity data, addressing challenges in fusing data with different sampling rates. Moreover, it employs multi-scale attention to capture long-term dependencies in temporal data, enhancing forecasting accuracy. To evaluate the performance of AttenGluco, we conduct forecasting experiments on the recently released AIREADI dataset, analyzing its predictive accuracy across different subject cohorts including healthy individuals, people with prediabetes, and those with type 2 diabetes. Furthermore, we investigate its performance improvements and forgetting behavior as new cohorts are introduced. Our evaluations show that AttenGluco improves all error metrics, such as root mean square error (RMSE), mean absolute error (MAE), and correlation, compared to the multimodal LSTM model. AttenGluco outperforms this baseline model by about 10% and 15% in terms of RMSE and MAE, respectively.
Hybrid Attention Model Using Feature Decomposition and Knowledge Distillation for Glucose Forecasting
Farahmand, Ebrahim, Soumma, Shovito Barua, Chatrudi, Nooshin Taheri, Ghasemzadeh, Hassan
The availability of continuous glucose monitors as over-the-counter commodities have created a unique opportunity to monitor a person's blood glucose levels, forecast blood glucose trajectories and provide automated interventions to prevent devastating chronic complications that arise from poor glucose control. However, forecasting blood glucose levels is challenging because blood glucose changes consistently in response to food intake, medication intake, physical activity, sleep, and stress. It is particularly difficult to accurately predict BGL from multimodal and irregularly sampled data and over long prediction horizons. Furthermore, these forecasting models must operate in real-time on edge devices to provide in-the-moment interventions. To address these challenges, we propose GlucoNet, an AI-powered sensor system for continuously monitoring behavioral and physiological health and robust forecasting of blood glucose patterns. GlucoNet devises a feature decomposition-based transformer model that incorporates patients' behavioral and physiological data and transforms sparse and irregular patient data (e.g., diet and medication intake data) into continuous features using a mathematical model, facilitating better integration with the BGL data. Given the non-linear and non-stationary nature of BG signals, we propose a decomposition method to extract both low and high-frequency components from the BGL signals, thus providing accurate forecasting. To reduce the computational complexity, we also propose to employ knowledge distillation to compress the transformer model. GlucoNet achieves a 60% improvement in RMSE and a 21% reduction in the number of parameters, using data obtained involving 12 participants with T1-Diabetes. These results underscore GlucoNet's potential as a compact and reliable tool for real-world diabetes prevention and management.
Exploring DNN Robustness Against Adversarial Attacks Using Approximate Multipliers
Askarizadeh, Mohammad Javad, Farahmand, Ebrahim, Castro-Godinez, Jorge, Mahani, Ali, Cabrera-Quiros, Laura, Salazar-Garcia, Carlos
Deep Neural Networks (DNNs) have advanced in many real-world applications, such as healthcare and autonomous driving. However, their high computational complexity and vulnerability to adversarial attacks are ongoing challenges. In this letter, approximate multipliers are used to explore DNN robustness improvement against adversarial attacks. By uniformly replacing accurate multipliers for state-of-the-art approximate ones in DNN layer models, we explore the DNNs robustness against various adversarial attacks in a feasible time. Results show up to 7% accuracy drop due to approximations when no attack is present while improving robust accuracy up to 10% when attacks applied.