Farahat, Ahmed
An ensemble of convolution-based methods for fault detection using vibration signals
Lee, Xian Yeow, Kumar, Aman, Vidyaratne, Lasitha, Rao, Aniruddha Rajendra, Farahat, Ahmed, Gupta, Chetan
This paper focuses on solving a fault detection problem using multivariate time series of vibration signals collected from planetary gearboxes in a test rig. Various traditional machine learning and deep learning methods have been proposed for multivariate time-series classification, including distance-based, functional data-oriented, feature-driven, and convolution kernel-based methods. Recent studies have shown using convolution kernel-based methods like ROCKET, and 1D convolutional neural networks with ResNet and FCN, have robust performance for multivariate time-series data classification. We propose an ensemble of three convolution kernel-based methods and show its efficacy on this fault detection problem by outperforming other approaches and achieving an accuracy of more than 98.8\%.
Data-driven Residual Generation for Early Fault Detection with Limited Data
Khorasgani, Hamed, Farahat, Ahmed, Gupta, Chetan
Traditionally, fault detection and isolation community has used system dynamic equations to generate diagnosers and to analyze detectability and isolability of the dynamic systems. Model-based fault detection and isolation methods use system model to generate a set of residuals as the bases for fault detection and isolation. However, in many complex systems it is not feasible to develop highly accurate models for the systems and to keep the models updated during the system lifetime. Recently, data-driven solutions have received an immense attention in the industries systems for several practical reasons. First, these methods do not require the initial investment and expertise for developing accurate models. Moreover, it is possible to automatically update and retrain the diagnosers as the system or the environment change over time. Finally, unlike the model-based methods it is straight forward to combine time series measurements such as pressure and voltage with other sources of information such as system operating hours to achieve a higher accuracy. In this paper, we extend the traditional model-based fault detection and isolation concepts such as residuals, and detectable and isolable faults to the data-driven domain. We then propose an algorithm to automatically generate residuals from the normal operating data. We present the performance of our proposed approach through a comparative case study.
An Offline Deep Reinforcement Learning for Maintenance Decision-Making
Khorasgani, Hamed, Wang, Haiyan, Gupta, Chetan, Farahat, Ahmed
Several machine learning and deep learning frameworks have been proposed to solve remaining useful life estimation and failure prediction problems in recent years. Having access to the remaining useful life estimation or likelihood of failure in near future helps operators to assess the operating conditions and, therefore, provides better opportunities for sound repair and maintenance decisions. However, many operators believe remaining useful life estimation and failure prediction solutions are incomplete answers to the maintenance challenge. They argue that knowing the likelihood of failure in the future is not enough to make maintenance decisions that minimize costs and keep the operators safe. In this paper, we present a maintenance framework based on offline supervised deep reinforcement learning that instead of providing information such as likelihood of failure, suggests actions such as "continuation of the operation" or "the visitation of the repair shop" to the operators in order to maximize the overall profit. Using offline reinforcement learning makes it possible to learn the optimum maintenance policy from historical data without relying on expensive simulators. We demonstrate the application of our solution in a case study using the NASA C-MAPSS dataset.
Wisdom of the Ensemble: Improving Consistency of Deep Learning Models
Wang, Lijing, Ghosh, Dipanjan, Diaz, Maria Teresa Gonzalez, Farahat, Ahmed, Alam, Mahbubul, Gupta, Chetan, Chen, Jiangzhuo, Marathe, Madhav
Deep learning classifiers are assisting humans in making decisions and hence the user's trust in these models is of paramount importance. Trust is often a function of constant behavior. From an AI model perspective it means given the same input the user would expect the same output, especially for correct outputs, or in other words consistently correct outputs. This paper studies a model behavior in the context of periodic retraining of deployed models where the outputs from successive generations of the models might not agree on the correct labels assigned to the same input. We formally define consistency and correct-consistency of a learning model. We prove that consistency and correct-consistency of an ensemble learner is not less than the average consistency and correct-consistency of individual learners and correct-consistency can be improved with a probability by combining learners with accuracy not less than the average accuracy of ensemble component learners. To validate the theory using three datasets and two state-of-the-art deep learning classifiers we also propose an efficient dynamic snapshot ensemble method and demonstrate its value.
Health Indicator Forecasting for Improving Remaining Useful Life Estimation
Wang, Qiyao, Farahat, Ahmed, Gupta, Chetan, Wang, Haiyan
Prognostics is concerned with predicting the future health of the equipment and any potential failures. With the advances in the Internet of Things (IoT), data-driven approaches for prognostics that leverage the power of machine learning models are gaining popularity. One of the most important categories of data-driven approaches relies on a predefined or learned health indicator to characterize the equipment condition up to the present time and make inference on how it is likely to evolve in the future. In these approaches, health indicator forecasting that constructs the health indicator curve over the lifespan using partially observed measurements (i.e., health indicator values within an initial period) plays a key role. Existing health indicator forecasting algorithms, such as the functional Empirical Bayesian approach, the regression-based formulation, a naive scenario matching based on the nearest neighbor, have certain limitations. In this paper, we propose a new `generative + scenario matching' algorithm for health indicator forecasting. The key idea behind the proposed approach is to first non-parametrically fit the underlying health indicator curve with a continuous Gaussian Process using a sample of run-to-failure health indicator curves. The proposed approach then generates a rich set of random curves from the learned distribution, attempting to obtain all possible variations of the target health condition evolution process over the system's lifespan. The health indicator extrapolation for a piece of functioning equipment is inferred as the generated curve that has the highest matching level within the observed period. Our experimental results show the superiority of our algorithm over the other state-of-the-art methods.
Generative Adversarial Networks for Failure Prediction
Zheng, Shuai, Farahat, Ahmed, Gupta, Chetan
Prognostics and Health Management (PHM) is an emerging engineering discipline which is concerned with the analysis and prediction of equipment health and performance. One of the key challenges in PHM is to accurately predict impending failures in the equipment. In recent years, solutions for failure prediction have evolved from building complex physical models to the use of machine learning algorithms that leverage the data generated by the equipment. However, failure prediction problems pose a set of unique challenges that make direct application of traditional classification and prediction algorithms impractical. These challenges include the highly imbalanced training data, the extremely high cost of collecting more failure samples, and the complexity of the failure patterns. Traditional oversampling techniques will not be able to capture such complexity and accordingly result in overfitting the training data. This paper addresses these challenges by proposing a novel algorithm for failure prediction using Generative Adversarial Networks (GAN-FP). GAN-FP first utilizes two GAN networks to simultaneously generate training samples and build an inference network that can be used to predict failures for new samples. GAN-FP first adopts an infoGAN to generate realistic failure and non-failure samples, and initialize the weights of the first few layers of the inference network. The inference network is then tuned by optimizing a weighted loss objective using only real failure and non-failure samples. The inference network is further tuned using a second GAN whose purpose is to guarantee the consistency between the generated samples and corresponding labels. GAN-FP can be used for other imbalanced classification problems as well.
Remaining Useful Life Estimation Using Functional Data Analysis
Wang, Qiyao, Zheng, Shuai, Farahat, Ahmed, Serita, Susumu, Gupta, Chetan
Remaining Useful Life (RUL) of an equipment or one of its components is defined as the time left until the equipment or component reaches its end of useful life. Accurate RUL estimation is exceptionally beneficial to Predictive Maintenance, and Prognostics and Health Management (PHM). Data driven approaches which leverage the power of algorithms for RUL estimation using sensor and operational time series data are gaining popularity. Existing algorithms, such as linear regression, Convolutional Neural Network (CNN), Hidden Markov Models (HMMs), and Long Short-Term Memory (LSTM), have their own limitations for the RUL estimation task. In this work, we propose a novel Functional Data Analysis (FDA) method called functional Multilayer Perceptron (functional MLP) for RUL estimation. Functional MLP treats time series data from multiple equipment as a sample of random continuous processes over time. FDA explicitly incorporates both the correlations within the same equipment and the random variations across different equipment's sensor time series into the model. FDA also has the benefit of allowing the relationship between RUL and sensor variables to vary over time. We implement functional MLP on the benchmark NASA C-MAPSS data and evaluate the performance using two popularly-used metrics. Results show the superiority of our algorithm over all the other state-of-the-art methods.
Exemplar-Based Topic Detection in Twitter Streams
Elbagoury, Ahmed (University of Waterloo) | Ibrahim, Rania (University of Waterloo) | Farahat, Ahmed (University of Waterloo) | Kamel, Mohamed (University of Waterloo) | Karray, Fakhri (University of Waterloo)
Detecting topics in Twitter streams has been gaining an increasing amount of attention. It can be of great support for communities struck by natural disasters, and could assist companies and political parties understand users' opinions and needs. Traditional approaches for topic detection focus on representing topics using terms, are negatively affected by length limitation and the lack of context associated with tweets.In this work, we propose an Exemplar-based approach for topic detection, in which detected topics are represented using a few selected tweets. Using exemplar tweets instead of a set of key words allows for an easy interpretation of the meaning of the detected topics. Experimental evaluation on benchmark Twitter datasets shows that the proposed topic detection approach achieves the best term precision. It does this while maintaining good topic recall and running time compared to other approaches.