Goto

Collaborating Authors

 Fang, Yuan


FineMolTex: Towards Fine-grained Molecular Graph-Text Pre-training

arXiv.org Artificial Intelligence

Understanding molecular structure and related knowledge is crucial for scientific research. Recent studies integrate molecular graphs with their textual descriptions to enhance molecular representation learning. However, they focus on the whole molecular graph and neglect frequently occurring subgraphs, known as motifs,which are essential for determining molecular properties. Without such fine-grained knowledge, these models struggle to generalize to unseen molecules and tasks that require motif-level insights. To bridge this gap, we propose FineMolTex, a novel Fine-grained Molecular graph-Text pre-training framework to jointly learn coarse-grained molecule-level knowledge and fine-grained motif-level knowledge. Specifically, FineMolTex consists of two pre-training tasks: a contrastive alignment task for coarse-grained matching and a masked multi-modal modeling task for fine-grained matching. In particular, the latter predicts the labels of masked motifs and words, leveraging insights from each other, thereby enabling FineMolTex to understand the fine-grained matching between motifs and words. Finally, we conduct extensive experiments across three downstream tasks, achieving up to 230% improvement in the text-based molecule editing task. Additionally, our case studies reveal that FineMolTex successfully captures fine-grained knowledge, potentially offering valuable insights for drug discovery and catalyst design.


DyGPrompt: Learning Feature and Time Prompts on Dynamic Graphs

arXiv.org Artificial Intelligence

Dynamic graphs are pervasive in the real world, modeling dynamic relations between objects across various fields. For dynamic graph modeling, dynamic graph neural networks (DGNNs) have emerged as a mainstream technique, which are generally pre-trained on the link prediction task, leaving a significant gap from the objectives of downstream tasks such as node classification. To bridge the gap, prompt-based learning has gained traction on graphs. However, existing efforts focus on static graphs, neglecting the evolution of dynamic graphs. In this paper, we propose DyGPrompt, a novel pre-training and prompting framework for dynamic graph modeling. First, we design dual prompts to address the gap in both task objectives and dynamic variations across pre-training and downstream tasks. Second, we recognize that node and time features mutually characterize each other, and propose dual condition-nets to model the evolving node-time patterns in downstream tasks. Finally, we thoroughly evaluate and analyze DyGPrompt through extensive experiments on three public datasets.


A Learned Generalized Geodesic Distance Function-Based Approach for Node Feature Augmentation on Graphs

arXiv.org Artificial Intelligence

Geodesic distances on manifolds have numerous applications in image processing, computer graphics and computer vision. In this work, we introduce an approach called `LGGD' (Learned Generalized Geodesic Distances). This method involves generating node features by learning a generalized geodesic distance function through a training pipeline that incorporates training data, graph topology and the node content features. The strength of this method lies in the proven robustness of the generalized geodesic distances to noise and outliers. Our contributions encompass improved performance in node classification tasks, competitive results with state-of-the-art methods on real-world graph datasets, the demonstration of the learnability of parameters within the generalized geodesic equation on graph, and dynamic inclusion of new labels.


Contrastive General Graph Matching with Adaptive Augmentation Sampling

arXiv.org Artificial Intelligence

Graph matching has important applications in pattern recognition and beyond. Current approaches predominantly adopt supervised learning, demanding extensive labeled data which can be limited or costly. Meanwhile, self-supervised learning methods for graph matching often require additional side information such as extra categorical information and input features, limiting their application to the general case. Moreover, designing the optimal graph augmentations for self-supervised graph matching presents another challenge to ensure robustness and efficacy. To address these issues, we introduce a novel Graph-centric Contrastive framework for Graph Matching (GCGM), capitalizing on a vast pool of graph augmentations for contrastive learning, yet without needing any side information. Given the variety of augmentation choices, we further introduce a Boosting-inspired Adaptive Augmentation Sampler (BiAS), which adaptively selects more challenging augmentations tailored for graph matching. Through various experiments, our GCGM surpasses state-of-the-art self-supervised methods across various datasets, marking a significant step toward more effective, efficient and general graph matching.


SIBO: A Simple Booster for Parameter-Efficient Fine-Tuning

arXiv.org Artificial Intelligence

Fine-tuning all parameters of large language models (LLMs) necessitates substantial computational power and extended time. Latest advancements in parameter-efficient fine-tuning (PEFT) techniques, such as Adapter tuning and LoRA, allow for adjustments to only a minor fraction of the parameters of these LLMs. Concurrently, it has been noted that the issue of over-smoothing diminishes the effectiveness of these Transformer-based LLMs, resulting in suboptimal performances in downstream tasks. In this paper, we present SIBO, which is a SImple BOoster to enhance PEFT, by injecting an initial residual. SIBO is straightforward and readily extensible to a range of state-of-the-art PEFT techniques to alleviate over-smoothing and enhance performance. Extensive experiments on 22 benchmark datasets demonstrate that SIBO significantly enhances the performance of various strong baselines, achieving up to 15.7% and 23.5% improvement over existing PEFT methods on the arithmetic and commonsense reasoning tasks, respectively.


Temporal and Heterogeneous Graph Neural Network for Remaining Useful Life Prediction

arXiv.org Artificial Intelligence

Predicting Remaining Useful Life (RUL) plays a crucial role in the prognostics and health management of industrial systems that involve a variety of interrelated sensors. Given a constant stream of time series sensory data from such systems, deep learning models have risen to prominence at identifying complex, nonlinear temporal dependencies in these data. In addition to the temporal dependencies of individual sensors, spatial dependencies emerge as important correlations among these sensors, which can be naturally modelled by a temporal graph that describes time-varying spatial relationships. However, the majority of existing studies have relied on capturing discrete snapshots of this temporal graph, a coarse-grained approach that leads to loss of temporal information. Moreover, given the variety of heterogeneous sensors, it becomes vital that such inherent heterogeneity is leveraged for RUL prediction in temporal sensor graphs. To capture the nuances of the temporal and spatial relationships and heterogeneous characteristics in an interconnected graph of sensors, we introduce a novel model named Temporal and Heterogeneous Graph Neural Networks (THGNN). Specifically, THGNN aggregates historical data from neighboring nodes to accurately capture the temporal dynamics and spatial correlations within the stream of sensor data in a fine-grained manner. Moreover, the model leverages Feature-wise Linear Modulation (FiLM) to address the diversity of sensor types, significantly improving the model's capacity to learn the heterogeneity in the data sources. Finally, we have validated the effectiveness of our approach through comprehensive experiments. Our empirical findings demonstrate significant advancements on the N-CMAPSS dataset, achieving improvements of up to 19.2% and 31.6% in terms of two different evaluation metrics over state-of-the-art methods.


Text-Free Multi-domain Graph Pre-training: Toward Graph Foundation Models

arXiv.org Artificial Intelligence

Given the ubiquity of graph data, it is intriguing to ask: Is it possible to train a graph foundation model on a broad range of graph data across diverse domains? A major hurdle toward this goal lies in the fact that graphs from different domains often exhibit profoundly divergent characteristics. Although there have been some initial efforts in integrating multi-domain graphs for pre-training, they primarily rely on textual descriptions to align the graphs, limiting their application to text-attributed graphs. Moreover, different source domains may conflict or interfere with each other, and their relevance to the target domain can vary significantly. To address these issues, we propose MDGPT, a text free Multi-Domain Graph Pre-Training and adaptation framework designed to exploit multi-domain knowledge for graph learning. First, we propose a set of domain tokens to to align features across source domains for synergistic pre-training. Second, we propose a dual prompts, consisting of a unifying prompt and a mixing prompt, to further adapt the target domain with unified multi-domain knowledge and a tailored mixture of domain-specific knowledge. Finally, we conduct extensive experiments involving six public datasets to evaluate and analyze MDGPT, which outperforms prior art by up to 37.9%.


Collaborative-Enhanced Prediction of Spending on Newly Downloaded Mobile Games under Consumption Uncertainty

arXiv.org Artificial Intelligence

With the surge in mobile gaming, accurately predicting user spending on newly downloaded games has become paramount for maximizing revenue. However, the inherently unpredictable nature of user behavior poses significant challenges in this endeavor. To address this, we propose a robust model training and evaluation framework aimed at standardizing spending data to mitigate label variance and extremes, ensuring stability in the modeling process. Within this framework, we introduce a collaborative-enhanced model designed to predict user game spending without relying on user IDs, thus ensuring user privacy and enabling seamless online training. Our model adopts a unique approach by separately representing user preferences and game features before merging them as input to the spending prediction module. Through rigorous experimentation, our approach demonstrates notable improvements over production models, achieving a remarkable \textbf{17.11}\% enhancement on offline data and an impressive \textbf{50.65}\% boost in an online A/B test. In summary, our contributions underscore the importance of stable model training frameworks and the efficacy of collaborative-enhanced models in predicting user spending behavior in mobile gaming.


Diffusion-based Negative Sampling on Graphs for Link Prediction

arXiv.org Artificial Intelligence

Link prediction is a fundamental task for graph analysis with important applications on the Web, such as social network analysis and recommendation systems, etc. Modern graph link prediction methods often employ a contrastive approach to learn robust node representations, where negative sampling is pivotal. Typical negative sampling methods aim to retrieve hard examples based on either predefined heuristics or automatic adversarial approaches, which might be inflexible or difficult to control. Furthermore, in the context of link prediction, most previous methods sample negative nodes from existing substructures of the graph, missing out on potentially more optimal samples in the latent space. To address these issues, we investigate a novel strategy of multi-level negative sampling that enables negative node generation with flexible and controllable ``hardness'' levels from the latent space. Our method, called Conditional Diffusion-based Multi-level Negative Sampling (DMNS), leverages the Markov chain property of diffusion models to generate negative nodes in multiple levels of variable hardness and reconcile them for effective graph link prediction. We further demonstrate that DMNS follows the sub-linear positivity principle for robust negative sampling. Extensive experiments on several benchmark datasets demonstrate the effectiveness of DMNS.


MultiGPrompt for Multi-Task Pre-Training and Prompting on Graphs

arXiv.org Artificial Intelligence

Graphs can inherently model interconnected objects on the Web, thereby facilitating a series of Web applications, such as web analyzing and content recommendation. Recently, Graph Neural Networks (GNNs) have emerged as a mainstream technique for graph representation learning. However, their efficacy within an end-to-end supervised framework is significantly tied to the availabilityof task-specific labels. To mitigate labeling costs and enhance robustness in few-shot settings, pre-training on self-supervised tasks has emerged as a promising method, while prompting has been proposed to further narrow the objective gap between pretext and downstream tasks. Although there has been some initial exploration of prompt-based learning on graphs, they primarily leverage a single pretext task, resulting in a limited subset of general knowledge that could be learned from the pre-training data. Hence, in this paper, we propose MultiGPrompt, a novel multi-task pre-training and prompting framework to exploit multiple pretext tasks for more comprehensive pre-trained knowledge. First, in pre-training, we design a set of pretext tokens to synergize multiple pretext tasks. Second, we propose a dual-prompt mechanism consisting of composed and open prompts to leverage task-specific and global pre-training knowledge, to guide downstream tasks in few-shot settings. Finally, we conduct extensive experiments on six public datasets to evaluate and analyze MultiGPrompt.