Goto

Collaborating Authors

 Fang, Xiang


ChinaTelecom System Description to VoxCeleb Speaker Recognition Challenge 2023

arXiv.org Artificial Intelligence

This technical report describes ChinaTelecom system for Track 1 (closed) of the VoxCeleb2023 Speaker Recognition Challenge (VoxSRC 2023). Our system consists of several ResNet variants trained only on VoxCeleb2, which were fused for better performance later. Score calibration was also applied for each variant and the fused system. The final submission achieved minDCF of 0.1066 and EER of 1.980%.


You Can Ground Earlier than See: An Effective and Efficient Pipeline for Temporal Sentence Grounding in Compressed Videos

arXiv.org Artificial Intelligence

Given an untrimmed video, temporal sentence grounding (TSG) aims to locate a target moment semantically according to a sentence query. Although previous respectable works have made decent success, they only focus on high-level visual features extracted from the consecutive decoded frames and fail to handle the compressed videos for query modelling, suffering from insufficient representation capability and significant computational complexity during training and testing. In this paper, we pose a new setting, compressed-domain TSG, which directly utilizes compressed videos rather than fully-decompressed frames as the visual input. To handle the raw video bit-stream input, we propose a novel Three-branch Compressed-domain Spatial-temporal Fusion (TCSF) framework, which extracts and aggregates three kinds of low-level visual features (I-frame, motion vector and residual features) for effective and efficient grounding. Particularly, instead of encoding the whole decoded frames like previous works, we capture the appearance representation by only learning the I-frame feature to reduce delay or latency. Besides, we explore the motion information not only by learning the motion vector feature, but also by exploring the relations of neighboring frames via the residual feature. In this way, a three-branch spatial-temporal attention layer with an adaptive motion-appearance fusion module is further designed to extract and aggregate both appearance and motion information for the final grounding. Experiments on three challenging datasets shows that our TCSF achieves better performance than other state-of-the-art methods with lower complexity.


Unbalanced Incomplete Multi-view Clustering via the Scheme of View Evolution: Weak Views are Meat; Strong Views do Eat

arXiv.org Machine Learning

Incomplete multi-view clustering is an important technique to deal with real-world incomplete multi-view data. Previous works assume that all views have the same incompleteness, i.e., balanced incompleteness. However, different views often have distinct incompleteness, i.e., unbalanced incompleteness, which results in strong views (low-incompleteness views) and weak views (high-incompleteness views). The unbalanced incompleteness prevents us from directly using the previous methods for clustering. In this paper, inspired by the effective biological evolution theory, we design the novel scheme of view evolution to cluster strong and weak views. Moreover, we propose an Unbalanced Incomplete Multi-view Clustering method (UIMC), which is the first effective method based on view evolution for unbalanced incomplete multi-view clustering. Compared with previous methods, UIMC has two unique advantages: 1) it proposes weighted multi-view subspace clustering to integrate these unbalanced incomplete views, which effectively solves the unbalanced incomplete multi-view problem; 2) it designs the low-rank and robust representation to recover the data, which diminishes the impact of the incompleteness and noises. Extensive experimental results demonstrate that UIMC improves the clustering performance by up to 40% on three evaluation metrics over other state-of-the-art methods.


Double Self-weighted Multi-view Clustering via Adaptive View Fusion

arXiv.org Artificial Intelligence

Multi-view clustering has been applied in many real-world applications where original data often contain noises. Some graph-based multi-view clustering methods have been proposed to try to reduce the negative influence of noises. However, previous graph-based multi-view clustering methods treat all features equally even if there are redundant features or noises, which is obviously unreasonable. In this paper, we propose a novel multi-view clustering framework Double Self-weighted Multi-view Clustering (DSMC) to overcome the aforementioned deficiency. DSMC performs double self-weighted operations to remove redundant features and noises from each graph, thereby obtaining robust graphs. For the first self-weighted operation, it assigns different weights to different features by introducing an adaptive weight matrix, which can reinforce the role of the important features in the joint representation and make each graph robust. For the second self-weighting operation, it weights different graphs by imposing an adaptive weight factor, which can assign larger weights to more robust graphs. Furthermore, by designing an adaptive multiple graphs fusion, we can fuse the features in the different graphs to integrate these graphs for clustering. Experiments on six real-world datasets demonstrate its advantages over other state-of-the-art multi-view clustering methods.


Detection of Malfunctioning Smart Electricity Meter

arXiv.org Machine Learning

In this paper, a method for malfunctioning smart meter detection, based on Long Short-Term Memory (LSTM) and Temporal Phase Convolutional Neural Network (TPCNN), is proposed originally. This method is very useful for some developing countries where smart meters have not been popularized but in high demand. In addition, it is a new topic that people try to increase the service life span of smart meters to prevent unnecessary waste by detecting malfunctioning meters. We are the first people complete a combination of malfunctioning meters detection and prediction model based on deep learning methods. To the best our knowledge, our approach is the first method that achieves the malfunctioning meter detection of specific residential areas with their residents' data in practice. The procedure proposed creatively in this paper mainly consists of four components: data collecting and cleaning, prediction about electricity consumption based on LSTM, sliding window detection, and single user classification based on CNN. To make better classifying of malfunctioned user meters, we combine recurrence plots as image-input and combine them with sequence-input, which is the first work that applies one and two dimensions as two paths CNN's input for sequence data classification. Finally, many classical methods are compared with the method proposed in this paper. After comparison with classical methods, Elastic Net and Gradient Boosting Regression, the result shows that our method has higher accuracy. The average area under the Receiver Operating Characteristic (ROC) curve is 0.80 and the standard deviation is 0.04. The average area under the Precision-Recall Curve (PRC) is 0.84.