Goto

Collaborating Authors

 Fang, Shijie


FLEX: A Framework for Learning Robot-Agnostic Force-based Skills Involving Sustained Contact Object Manipulation

arXiv.org Artificial Intelligence

Learning to manipulate objects efficiently, particularly those involving sustained contact (e.g., pushing, sliding) and articulated parts (e.g., drawers, doors), presents significant challenges. Traditional methods, such as robot-centric reinforcement learning (RL), imitation learning, and hybrid techniques, require massive training and often struggle to generalize across different objects and robot platforms. We propose a novel framework for learning object-centric manipulation policies in force space, decoupling the robot from the object. By directly applying forces to selected regions of the object, our method simplifies the action space, reduces unnecessary exploration, and decreases simulation overhead. This approach, trained in simulation on a small set of representative objects, captures object dynamics -- such as joint configurations -- allowing policies to generalize effectively to new, unseen objects. Decoupling these policies from robot-specific dynamics enables direct transfer to different robotic platforms (e.g., Kinova, Panda, UR5) without retraining. Our evaluations demonstrate that the method significantly outperforms baselines, achieving over an order of magnitude improvement in training efficiency compared to other state-of-the-art methods. Additionally, operating in force space enhances policy transferability across diverse robot platforms and object types. We further showcase the applicability of our method in a real-world robotic setting. For supplementary materials and videos, please visit: https://tufts-ai-robotics-group.github.io/FLEX/


BaCon: Boosting Imbalanced Semi-supervised Learning via Balanced Feature-Level Contrastive Learning

arXiv.org Artificial Intelligence

Semi-supervised Learning (SSL) reduces the need for extensive annotations in deep learning, but the more realistic challenge of imbalanced data distribution in SSL remains largely unexplored. In Class Imbalanced Semi-supervised Learning (CISSL), the bias introduced by unreliable pseudo-labels can be exacerbated by imbalanced data distributions. Most existing methods address this issue at instance-level through reweighting or resampling, but the performance is heavily limited by their reliance on biased backbone representation. Some other methods do perform feature-level adjustments like feature blending but might introduce unfavorable noise. In this paper, we discuss the bonus of a more balanced feature distribution for the CISSL problem, and further propose a Balanced Feature-Level Contrastive Learning method (BaCon). Our method directly regularizes the distribution of instances' representations in a well-designed contrastive manner. Specifically, class-wise feature centers are computed as the positive anchors, while negative anchors are selected by a straightforward yet effective mechanism. A distribution-related temperature adjustment is leveraged to control the class-wise contrastive degrees dynamically. Our method demonstrates its effectiveness through comprehensive experiments on the CIFAR10-LT, CIFAR100-LT, STL10-LT, and SVHN-LT datasets across various settings. For example, BaCon surpasses instance-level method FixMatch-based ABC on CIFAR10-LT with a 1.21% accuracy improvement, and outperforms state-of-the-art feature-level method CoSSL on CIFAR100-LT with a 0.63% accuracy improvement. When encountering more extreme imbalance degree, BaCon also shows better robustness than other methods.


How Much Progress Did I Make? An Unexplored Human Feedback Signal for Teaching Robots

arXiv.org Artificial Intelligence

How Much Progress Did I Make? Abstract-- Enhancing the expressiveness of human teaching is vital for both improving robots' learning from humans and the human-teaching-robot experience. In this work, we characterize and test a little-used teaching signal: progress, designed to represent the completion percentage of a task. We conducted two online studies with 76 crowd-sourced participants and one public space study with 40 non-expert participants to validate the capability of this progress signal. We find that progress indicates whether the task is successfully performed, reflects the degree of task completion, identifies unproductive but harmless behaviors, and is likely to be more consistent across participants. Furthermore, our results show that giving progress does not require extra workload and time. An additional contribution of our work is a dataset of 40 non-expert demonstrations from the public space study through an ice cream topping-adding task, which we observe to be multi-policy and sub-optimal, with sub-optimality not only from teleoperation errors but also from exploratory actions and attempts.


VCC-INFUSE: Towards Accurate and Efficient Selection of Unlabeled Examples in Semi-supervised Learning

arXiv.org Artificial Intelligence

Despite the progress of Semi-supervised Learning (SSL), existing methods fail to utilize unlabeled data effectively and efficiently. Many pseudo-label-based methods select unlabeled examples based on inaccurate confidence scores from the classifier. Most prior work also uses all available unlabeled data without pruning, making it difficult to handle large amounts of unlabeled data. To address these issues, we propose two methods: Variational Confidence Calibration (VCC) and Influence-Function-based Unlabeled Sample Elimination (INFUSE). VCC is an universal plugin for SSL confidence calibration, using a variational autoencoder to select more accurate pseudo labels based on three types of consistency scores. INFUSE is a data pruning method that constructs a core dataset of unlabeled examples under SSL. Our methods are effective in multiple datasets and settings, reducing classification errors rates and saving training time. Together, VCC-INFUSE reduces the error rate of FlexMatch on the CIFAR-100 dataset by 1.08% while saving nearly half of the training time.