Goto

Collaborating Authors

 Fang, Miao


Injecting Domain-Specific Knowledge into Large Language Models: A Comprehensive Survey

arXiv.org Artificial Intelligence

Large Language Models (LLMs) have demonstrated remarkable success in various tasks such as natural language understanding, text summarization, and machine translation. However, their general-purpose nature often limits their effectiveness in domain-specific applications that require specialized knowledge, such as healthcare, chemistry, or legal analysis. To address this, researchers have explored diverse methods to enhance LLMs by integrating domain-specific knowledge. In this survey, we provide a comprehensive overview of these methods, which we categorize into four key approaches: dynamic knowledge injection, static knowledge embedding, modular adapters, and prompt optimization. Each approach offers unique mechanisms to equip LLMs with domain expertise, balancing trade-offs between flexibility, scalability, and efficiency. We discuss how these methods enable LLMs to tackle specialized tasks, compare their advantages and disadvantages, evaluate domain-specific LLMs against general LLMs, and highlight the challenges and opportunities in this emerging field. For those interested in delving deeper into this area, we also summarize the commonly used datasets and benchmarks. To keep researchers updated on the latest studies, we maintain an open-source at: https://github.com/abilliyb/Knowledge_Injection_Survey_Papers, dedicated to documenting research in the field of specialized LLM.


Hazards in Daily Life? Enabling Robots to Proactively Detect and Resolve Anomalies

arXiv.org Artificial Intelligence

Existing household robots have made significant progress in performing routine tasks, such as cleaning floors or delivering objects. However, a key limitation of these robots is their inability to recognize potential problems or dangers in home environments. For example, a child may pick up and ingest medication that has fallen on the floor, posing a serious risk. We argue that household robots should proactively detect such hazards or anomalies within the home, and propose the task of anomaly scenario generation. We leverage foundational models instead of relying on manually labeled data to build simulated environments. Specifically, we introduce a multi-agent brainstorming approach, where agents collaborate and generate diverse scenarios covering household hazards, hygiene management, and child safety. These textual task descriptions are then integrated with designed 3D assets to simulate realistic environments. Within these constructed environments, the robotic agent learns the necessary skills to proactively discover and handle the proposed anomalies through task decomposition, and optimal learning approach selection. We demonstrate that our generated environment outperforms others in terms of task description and scene diversity, ultimately enabling robotic agents to better address potential household hazards.


Asynchronous and Segmented Bidirectional Encoding for NMT

arXiv.org Artificial Intelligence

With the rapid advancement of Neural Machine Translation (NMT), enhancing translation efficiency and quality has become a focal point of research. Despite the commendable performance of general models such as the Transformer in various aspects, they still fall short in processing long sentences and fully leveraging bidirectional contextual information. This paper introduces an improved model based on the Transformer, implementing an asynchronous and segmented bidirectional decoding strategy aimed at elevating translation efficiency and accuracy. Compared to traditional unidirectional translations from left-to-right or right-to-left, our method demonstrates heightened efficiency and improved translation quality, particularly in handling long sentences. Experimental results on the IWSLT2017 dataset confirm the effectiveness of our approach in accelerating translation and increasing accuracy, especially surpassing traditional unidirectional strategies in long sentence translation. Furthermore, this study analyzes the impact of sentence length on decoding outcomes and explores the model's performance in various scenarios. The findings of this research not only provide an effective encoding strategy for the NMT field but also pave new avenues and directions for future studies.


Efficient Reinforcemen Learning via Decoupling Exploration and Utilization

arXiv.org Artificial Intelligence

Deep neural network(DNN) generalization is limited by the over-reliance of current offline reinforcement learning techniques on conservative processing of existing datasets. This method frequently results in algorithms that settle for suboptimal solutions that only adjust to a certain dataset. Similarly, in online reinforcement learning, the previously imposed punitive pessimism also deprives the model of its exploratory potential. Our research proposes a novel framework, Optimistic and Pessimistic Actor Reinforcement Learning (OPARL). OPARL employs a unique dual-actor approach: an optimistic actor dedicated to exploration and a pessimistic actor focused on utilization, thereby effectively differentiating between exploration and utilization strategies. This unique combination in reinforcement learning methods fosters a more balanced and efficient approach. It enables the optimization of policies that focus on actions yielding high rewards through pessimistic utilization strategies, while also ensuring extensive state coverage via optimistic exploration. Experiments and theoretical study demonstrates OPARL improves agents' capacities for application and exploration. In the most tasks of DMControl benchmark and Mujoco environment, OPARL performed better than state-of-the-art methods. Our code has released on https://github.com/yydsok/OPARL


Enhancing Personalized Dialogue Generation with Contrastive Latent Variables: Combining Sparse and Dense Persona

arXiv.org Artificial Intelligence

The personalized dialogue explores the consistent relationship between dialogue generation and personality. Existing personalized dialogue agents model persona profiles from three resources: sparse or dense persona descriptions and dialogue histories. However, sparse structured persona attributes are explicit but uninformative, dense persona texts contain rich persona descriptions with much noise, and dialogue history query is both noisy and uninformative for persona modeling. In this work, we combine the advantages of the three resources to obtain a richer and more accurate persona. We design a Contrastive Latent Variable-based model (CLV) that clusters the dense persona descriptions into sparse categories, which are combined with the history query to generate personalized responses. Experimental results on Chinese and English datasets demonstrate our model's superiority in personalization.