Goto

Collaborating Authors

 Fang, Haowen


Attacking the Spike: On the Transferability and Security of Spiking Neural Networks to Adversarial Examples

arXiv.org Artificial Intelligence

Spiking neural networks (SNNs) have attracted much attention for their high energy efficiency and for recent advances in their classification performance. However, unlike traditional deep learning approaches, the analysis and study of the robustness of SNNs to adversarial examples remain relatively underdeveloped. In this work, we focus on advancing the adversarial attack side of SNNs and make three major contributions. First, we show that successful white-box adversarial attacks on SNNs are highly dependent on the underlying surrogate gradient technique, even in the case of adversarially trained SNNs. Second, using the best surrogate gradient technique, we analyze the transferability of adversarial attacks on SNNs and other state-of-the-art architectures like Vision Transformers (ViTs) and Big Transfer Convolutional Neural Networks (CNNs). We demonstrate that the adversarial examples created by non-SNN architectures are not misclassified often by SNNs. Third, due to the lack of an ubiquitous white-box attack that is effective across both the SNN and CNN/ViT domains, we develop a new white-box attack, the Auto Self-Attention Gradient Attack (Auto-SAGA). Our novel attack generates adversarial examples capable of fooling both SNN and non-SNN models simultaneously. Auto-SAGA is as much as $91.1\%$ more effective on SNN/ViT model ensembles and provides a $3\times$ boost in attack effectiveness on adversarially trained SNN ensembles compared to conventional white-box attacks like Auto-PGD. Our experiments and analyses are broad and rigorous covering three datasets (CIFAR-10, CIFAR-100 and ImageNet), five different white-box attacks and nineteen classifier models (seven for each CIFAR dataset and five models for ImageNet).


Accel-GCN: High-Performance GPU Accelerator Design for Graph Convolution Networks

arXiv.org Artificial Intelligence

Graph Convolutional Networks (GCNs) are pivotal in extracting latent information from graph data across various domains, yet their acceleration on mainstream GPUs is challenged by workload imbalance and memory access irregularity. To address these challenges, we present Accel-GCN, a GPU accelerator architecture for GCNs. The design of Accel-GCN encompasses: (i) a lightweight degree sorting stage to group nodes with similar degree; (ii) a block-level partition strategy that dynamically adjusts warp workload sizes, enhancing shared memory locality and workload balance, and reducing metadata overhead compared to designs like GNNAdvisor; (iii) a combined warp strategy that improves memory coalescing and computational parallelism in the column dimension of dense matrices. Utilizing these principles, we formulated a kernel for sparse matrix multiplication (SpMM) in GCNs that employs block-level partitioning and combined warp strategy. This approach augments performance and multi-level memory efficiency and optimizes memory bandwidth by exploiting memory coalescing and alignment. Evaluation of Accel-GCN across 18 benchmark graphs reveals that it outperforms cuSPARSE, GNNAdvisor, and graph-BLAST by factors of 1.17 times, 1.86 times, and 2.94 times respectively. The results underscore Accel-GCN as an effective solution for enhancing GCN computational efficiency.


Neuromorphic Online Learning for Spatiotemporal Patterns with a Forward-only Timeline

arXiv.org Artificial Intelligence

Spiking neural networks (SNNs) are bio-plausible computing models with high energy efficiency. The temporal dynamics of neurons and synapses enable them to detect temporal patterns and generate sequences. While Backpropagation Through Time (BPTT) is traditionally used to train SNNs, it is not suitable for online learning of embedded applications due to its high computation and memory cost as well as extended latency. Previous works have proposed online learning algorithms, but they often utilize highly simplified spiking neuron models without synaptic dynamics and reset feedback, resulting in subpar performance. In this work, we present Spatiotemporal Online Learning for Synaptic Adaptation (SOLSA), specifically designed for online learning of SNNs composed of Leaky Integrate and Fire (LIF) neurons with exponentially decayed synapses and soft reset. The algorithm not only learns the synaptic weight but also adapts the temporal filters associated to the synapses. Compared to the BPTT algorithm, SOLSA has much lower memory requirement and achieves a more balanced temporal workload distribution. Moreover, SOLSA incorporates enhancement techniques such as scheduled weight update, early stop training and adaptive synapse filter, which speed up the convergence and enhance the learning performance. When compared to other non-BPTT based SNN learning, SOLSA demonstrates an average learning accuracy improvement of 14.2%. Furthermore, compared to BPTT, SOLSA achieves a 5% higher average learning accuracy with a 72% reduction in memory cost.