Fang, Han
Lie Detector: Unified Backdoor Detection via Cross-Examination Framework
Wang, Xuan, Liang, Siyuan, Liao, Dongping, Fang, Han, Liu, Aishan, Cao, Xiaochun, Lu, Yu-liang, Chang, Ee-Chien, Gao, Xitong
Institutions with limited data and computing resources often outsource model training to third-party providers in a semi-honest setting, assuming adherence to prescribed training protocols with pre-defined learning paradigm (e.g., supervised or semi-supervised learning). However, this practice can introduce severe security risks, as adversaries may poison the training data to embed backdoors into the resulting model. Existing detection approaches predominantly rely on statistical analyses, which often fail to maintain universally accurate detection accuracy across different learning paradigms. To address this challenge, we propose a unified backdoor detection framework in the semi-honest setting that exploits cross-examination of model inconsistencies between two independent service providers. Specifically, we integrate central kernel alignment to enable robust feature similarity measurements across different model architectures and learning paradigms, thereby facilitating precise recovery and identification of backdoor triggers. We further introduce backdoor fine-tuning sensitivity analysis to distinguish backdoor triggers from adversarial perturbations, substantially reducing false positives. Extensive experiments demonstrate that our method achieves superior detection performance, improving accuracy by 5.4%, 1.6%, and 11.9% over SoTA baselines across supervised, semi-supervised, and autoregressive learning tasks, respectively. Notably, it is the first to effectively detect backdoors in multimodal large language models, further highlighting its broad applicability and advancing secure deep learning.
Think Smarter not Harder: Adaptive Reasoning with Inference Aware Optimization
Yu, Zishun, Xu, Tengyu, Jin, Di, Sankararaman, Karthik Abinav, He, Yun, Zhou, Wenxuan, Zeng, Zhouhao, Helenowski, Eryk, Zhu, Chen, Wang, Sinong, Ma, Hao, Fang, Han
Solving mathematics problems has been an intriguing capability of large language models, and many efforts have been made to improve reasoning by extending reasoning length, such as through self-correction and extensive long chain-of-thoughts. While promising in problem-solving, advanced long reasoning chain models exhibit an undesired single-modal behavior, where trivial questions require unnecessarily tedious long chains of thought. In this work, we propose a way to allow models to be aware of inference budgets by formulating it as utility maximization with respect to an inference budget constraint, hence naming our algorithm Inference Budget-Constrained Policy Optimization (IBPO). In a nutshell, models fine-tuned through IBPO learn to ``understand'' the difficulty of queries and allocate inference budgets to harder ones. With different inference budgets, our best models are able to have a $4.14$\% and $5.74$\% absolute improvement ($8.08$\% and $11.2$\% relative improvement) on MATH500 using $2.16$x and $4.32$x inference budgets respectively, relative to LLaMA3.1 8B Instruct. These improvements are approximately $2$x those of self-consistency under the same budgets.
ASAP: Learning Generalizable Online Bin Packing via Adaptive Selection After Pruning
Fang, Han, Weng, Paul, Ban, Yutong
Recently, deep reinforcement learning (DRL) has achieved promising results in solving online 3D Bin Packing Problems (3D-BPP). However, these DRL-based policies may perform poorly on new instances due to distribution shift. Besides generalization, we also consider adaptation, completely overlooked by previous work, which aims at rapidly finetuning these policies to a new test distribution. To tackle both generalization and adaptation issues, we propose Adaptive Selection After Pruning (ASAP), which decomposes a solver's decision-making into two policies, one for pruning and one for selection. The role of the pruning policy is to remove inherently bad actions, which allows the selection policy to choose among the remaining most valuable actions. To learn these policies, we propose a training scheme based on a meta-learning phase of both policies followed by a finetuning phase of the sole selection policy to rapidly adapt it to a test distribution. Our experiments demonstrate that ASAP exhibits excellent generalization and adaptation capabilities on in-distribution and out-of-distribution instances under both discrete and continuous setup.
Step-KTO: Optimizing Mathematical Reasoning through Stepwise Binary Feedback
Lin, Yen-Ting, Jin, Di, Xu, Tengyu, Wu, Tianhao, Sukhbaatar, Sainbayar, Zhu, Chen, He, Yun, Chen, Yun-Nung, Weston, Jason, Tian, Yuandong, Rahnama, Arash, Wang, Sinong, Ma, Hao, Fang, Han
Large language models (LLMs) have recently shown remarkable capabilities in reasoning-intensive tasks such as coding (Chen et al., 2021; Li et al., 2022; Rozière et al., 2023) and solving complex mathematical problems (Shao et al., 2024; Azerbayev et al., 2024). Prompting strategies like chain-of-thought prompting (Nye et al., 2021; Wei et al., 2022; Kojima et al., 2022; Adolphs et al., 2022) and self-consistency sampling (Wang et al., 2023) enhance these models' final-answer accuracy by encouraging them to articulate intermediate reasoning steps. However, a significant issue remains: even when these methods boost final-answer correctness, the internal reasoning steps are often unreliable or logically inconsistent (Uesato et al., 2022; Lightman et al., 2024). This discrepancy between correct final answers and flawed intermediate reasoning limits our ability to trust LLMs in scenarios where transparency and correctness of each reasoning stage are crucial (Lanham et al., 2023). For example, in mathematical problem-solving, a model might produce the right answer for the wrong reasons (Lyu et al., 2023; Zheng et al., 2024), confounding our understanding of its true capabilities (Turpin et al., 2023).
Multi-IF: Benchmarking LLMs on Multi-Turn and Multilingual Instructions Following
He, Yun, Jin, Di, Wang, Chaoqi, Bi, Chloe, Mandyam, Karishma, Zhang, Hejia, Zhu, Chen, Li, Ning, Xu, Tengyu, Lv, Hongjiang, Bhosale, Shruti, Zhu, Chenguang, Sankararaman, Karthik Abinav, Helenowski, Eryk, Kambadur, Melanie, Tayade, Aditya, Ma, Hao, Fang, Han, Wang, Sinong
Large Language Models (LLMs) have demonstrated impressive capabilities in various tasks, including instruction following, which is crucial for aligning model outputs with user expectations. However, evaluating LLMs' ability to follow instructions remains challenging due to the complexity and subjectivity of human language. Current benchmarks primarily focus on single-turn, monolingual instructions, which do not adequately reflect the complexities of real-world applications that require handling multi-turn and multilingual interactions. To address this gap, we introduce Multi-IF, a new benchmark designed to assess LLMs' proficiency in following multi-turn and multilingual instructions. Multi-IF, which utilizes a hybrid framework combining LLM and human annotators, expands upon the IFEval by incorporating multi-turn sequences and translating the English prompts into another 7 languages, resulting in a dataset of 4,501 multilingual conversations, where each has three turns. Our evaluation of 14 state-of-the-art LLMs on Multi-IF reveals that it presents a significantly more challenging task than existing benchmarks. All the models tested showed a higher rate of failure in executing instructions correctly with each additional turn. For example, o1-preview drops from 0.877 at the first turn to 0.707 at the third turn in terms of average accuracy over all languages. Moreover, languages with non-Latin scripts (Hindi, Russian, and Chinese) generally exhibit higher error rates, suggesting potential limitations in the models' multilingual capabilities. We release Multi-IF prompts and the evaluation code base to encourage further research in this critical area.
Improving Model Factuality with Fine-grained Critique-based Evaluator
Xie, Yiqing, Zhou, Wenxuan, Prakash, Pradyot, Jin, Di, Mao, Yuning, Fettes, Quintin, Talebzadeh, Arya, Wang, Sinong, Fang, Han, Rose, Carolyn, Fried, Daniel, Zhang, Hejia
Factuality evaluation aims to detect factual errors produced by language models (LMs) and hence guide the development of more factual models. Towards this goal, we train a factuality evaluator, FenCE, that provides LM generators with claim-level factuality feedback. We conduct data augmentation on a combination of public judgment datasets to train FenCE to (1) generate textual critiques along with scores and (2) make claim-level judgment based on diverse source documents obtained by various tools. We then present a framework that leverages FenCE to improve the factuality of LM generators by constructing training data. Specifically, we generate a set of candidate responses, leverage FenCE to revise and score each response without introducing lesser-known facts, and train the generator by preferring highly scored revised responses. Experiments show that our data augmentation methods improve the evaluator's accuracy by 2.9% on LLM-AggreFact. With FenCE, we improve Llama3-8B-chat's factuality rate by 14.45% on FActScore, outperforming state-of-the-art factuality finetuning methods by 6.96%.
The Perfect Blend: Redefining RLHF with Mixture of Judges
Xu, Tengyu, Helenowski, Eryk, Sankararaman, Karthik Abinav, Jin, Di, Peng, Kaiyan, Han, Eric, Nie, Shaoliang, Zhu, Chen, Zhang, Hejia, Zhou, Wenxuan, Zeng, Zhouhao, He, Yun, Mandyam, Karishma, Talabzadeh, Arya, Khabsa, Madian, Cohen, Gabriel, Tian, Yuandong, Ma, Hao, Wang, Sinong, Fang, Han
Reinforcement learning from human feedback (RLHF) has become the leading approach for fine-tuning large language models (LLM). However, RLHF has limitations in multi-task learning (MTL) due to challenges of reward hacking and extreme multi-objective optimization (i.e., trade-off of multiple and/or sometimes conflicting objectives). Applying RLHF for MTL currently requires careful tuning of the weights for reward model and data combinations. This is often done via human intuition and does not generalize. In this work, we introduce a novel post-training paradigm which we called Constrained Generative Policy Optimization (CGPO). The core of CGPO is Mixture of Judges (MoJ) with cost-efficient constrained policy optimization with stratification, which can identify the perfect blend in RLHF in a principled manner. It shows strong empirical results with theoretical guarantees, does not require extensive hyper-parameter tuning, and is plug-and-play in common post-training pipelines. Together, this can detect and mitigate reward hacking behaviors while reaching a pareto-optimal point across an extremely large number of objectives. Our empirical evaluations demonstrate that CGPO significantly outperforms standard RLHF algorithms like PPO and DPO across various tasks including general chat, STEM questions, instruction following, and coding. Specifically, CGPO shows improvements of 7.4% in AlpacaEval-2 (general chat), 12.5% in Arena-Hard (STEM & reasoning), and consistent gains in other domains like math and coding. Notably, PPO, while commonly used, is prone to severe reward hacking in popular coding benchmarks, which CGPO successfully addresses. This breakthrough in RLHF not only tackles reward hacking and extreme multi-objective optimization challenges but also advances the state-of-the-art in aligning general-purpose LLMs for diverse applications.
BoViLA: Bootstrapping Video-Language Alignment via LLM-Based Self-Questioning and Answering
Chen, Jin, Ma, Kaijing, Huang, Haojian, Shen, Jiayu, Fang, Han, Zang, Xianghao, Ban, Chao, He, Zhongjiang, Sun, Hao, Kang, Yanmei
The development of multi-modal models has been rapidly advancing, with some demonstrating remarkable capabilities. However, annotating video-text pairs remains expensive and insufficient. Take video question answering (VideoQA) tasks as an example, human annotated questions and answers often cover only part of the video, and similar semantics can also be expressed through different text forms, leading to underutilization of video. To address this, we propose BoViLA, a self-training framework that augments question samples during training through LLM-based self-questioning and answering, which help model exploit video information and the internal knowledge of LLMs more thoroughly to improve modality alignment. To filter bad self-generated questions, we introduce Evidential Deep Learning (EDL) to estimate uncertainty and assess the quality of self-generated questions by evaluating the modality alignment within the context. To the best of our knowledge, this work is the first to explore LLM-based self-training frameworks for modality alignment. We evaluate BoViLA on five strong VideoQA benchmarks, where it outperforms several state-of-the-art methods and demonstrate its effectiveness and generality. Additionally, we provide extensive analyses of the self-training framework and the EDL-based uncertainty filtering mechanism. The code will be made available at https://github.com/dunknsabsw/BoViLA.
Skywork-Math: Data Scaling Laws for Mathematical Reasoning in Large Language Models -- The Story Goes On
Zeng, Liang, Zhong, Liangjun, Zhao, Liang, Wei, Tianwen, Yang, Liu, He, Jujie, Cheng, Cheng, Hu, Rui, Liu, Yang, Yan, Shuicheng, Fang, Han, Zhou, Yahui
In this paper, we investigate the underlying factors that potentially enhance the mathematical reasoning capabilities of large language models (LLMs). We argue that the data scaling law for math reasoning capabilities in modern LLMs is far from being saturated, highlighting how the model's quality improves with increases in data quantity. To support this claim, we introduce the Skywork-Math model series, supervised fine-tuned (SFT) on common 7B LLMs using our proposed 2.5M-instance Skywork-MathQA dataset. Skywork-Math 7B has achieved impressive accuracies of 51.2% on the competition-level MATH benchmark and 83.9% on the GSM8K benchmark using only SFT data, outperforming an early version of GPT-4 on MATH. The superior performance of Skywork-Math models contributes to our novel two-stage data synthesis and model SFT pipelines, which include three different augmentation methods and a diverse seed problem set, ensuring both the quantity and quality of Skywork-MathQA dataset across varying difficulty levels. Most importantly, we provide several practical takeaways to enhance math reasoning abilities in LLMs for both research and industry applications.
Skywork-MoE: A Deep Dive into Training Techniques for Mixture-of-Experts Language Models
Wei, Tianwen, Zhu, Bo, Zhao, Liang, Cheng, Cheng, Li, Biye, Lü, Weiwei, Cheng, Peng, Zhang, Jianhao, Zhang, Xiaoyu, Zeng, Liang, Wang, Xiaokun, Ma, Yutuan, Hu, Rui, Yan, Shuicheng, Fang, Han, Zhou, Yahui
In this technical report, we introduce the training methodologies implemented in the development of Skywork-MoE, a high-performance mixture-of-experts (MoE) large language model (LLM) with 146 billion parameters and 16 experts. It is initialized from the pre-existing dense checkpoints of our Skywork-13B model. We explore the comparative effectiveness of upcycling versus training from scratch initializations. Our findings suggest that the choice between these two approaches should consider both the performance of the existing dense checkpoints and the MoE training budget. We highlight two innovative techniques: gating logit normalization, which improves expert diversification, and adaptive auxiliary loss coefficients, allowing for layer-specific adjustment of auxiliary loss coefficients. Our experimental results validate the effectiveness of these methods. Leveraging these techniques and insights, we trained our upcycled Skywork-MoE on a condensed subset of our SkyPile corpus. The evaluation results demonstrate that our model delivers strong performance across a wide range of benchmarks.