Goto

Collaborating Authors

 Fang, Congyu


Decentralised, Collaborative, and Privacy-preserving Machine Learning for Multi-Hospital Data

arXiv.org Artificial Intelligence

Machine Learning (ML) has demonstrated its great potential on medical data analysis. Large datasets collected from diverse sources and settings are essential for ML models in healthcare to achieve better accuracy and generalizability. Sharing data across different healthcare institutions is challenging because of complex and varying privacy and regulatory requirements. Hence, it is hard but crucial to allow multiple parties to collaboratively train an ML model leveraging the private datasets available at each party without the need for direct sharing of those datasets or compromising the privacy of the datasets through collaboration. In this paper, we address this challenge by proposing Decentralized, Collaborative, and Privacy-preserving ML for Multi-Hospital Data (DeCaPH). It offers the following key benefits: (1) it allows different parties to collaboratively train an ML model without transferring their private datasets; (2) it safeguards patient privacy by limiting the potential privacy leakage arising from any contents shared across the parties during the training process; and (3) it facilitates the ML model training without relying on a centralized server. We demonstrate the generalizability and power of DeCaPH on three distinct tasks using real-world distributed medical datasets: patient mortality prediction using electronic health records, cell-type classification using single-cell human genomes, and pathology identification using chest radiology images. We demonstrate that the ML models trained with DeCaPH framework have an improved utility-privacy trade-off, showing it enables the models to have good performance while preserving the privacy of the training data points. In addition, the ML models trained with DeCaPH framework in general outperform those trained solely with the private datasets from individual parties, showing that DeCaPH enhances the model generalizability.


Proof-of-Learning is Currently More Broken Than You Think

arXiv.org Artificial Intelligence

Proof-of-Learning (PoL) proposes that a model owner logs training checkpoints to establish a proof of having expended the computation necessary for training. The authors of PoL forego cryptographic approaches and trade rigorous security guarantees for scalability to deep learning. They empirically argued the benefit of this approach by showing how spoofing--computing a proof for a stolen model--is as expensive as obtaining the proof honestly by training the model. However, recent work has provided a counter-example and thus has invalidated this observation. In this work we demonstrate, first, that while it is true that current PoL verification is not robust to adversaries, recent work has largely underestimated this lack of robustness. This is because existing spoofing strategies are either unreproducible or target weakened instantiations of PoL--meaning they are easily thwarted by changing hyperparameters of the verification. Instead, we introduce the first spoofing strategies that can be reproduced across different configurations of the PoL verification and can be done for a fraction of the cost of previous spoofing strategies. This is possible because we identify key vulnerabilities of PoL and systematically analyze the underlying assumptions needed for robust verification of a proof. On the theoretical side, we show how realizing these assumptions reduces to open problems in learning theory.We conclude that one cannot develop a provably robust PoL verification mechanism without further understanding of optimization in deep learning.