Goto

Collaborating Authors

 Fang, Chongrong


Smart Predict-then-Optimize Method with Dependent Data: Risk Bounds and Calibration of Autoregression

arXiv.org Machine Learning

The predict-then-optimize (PTO) framework is indispensable for addressing practical stochastic decision-making tasks. It consists of two crucial steps: initially predicting unknown parameters of an optimization model and subsequently solving the problem based on these predictions. Elmachtoub and Grigas [1] introduced the Smart Predict-then-Optimize (SPO) loss for the framework, which gauges the decision error arising from predicted parameters, and a convex surrogate, the SPO+ loss, which incorporates the underlying structure of the optimization model. The consistency of these different loss functions is guaranteed under the assumption of i.i.d. training data. Nevertheless, various types of data are often dependent, such as power load fluctuations over time. This dependent nature can lead to diminished model performance in testing or real-world applications. Motivated to make intelligent predictions for time series data, we present an autoregressive SPO method directly targeting the optimization problem at the decision stage in this paper, where the conditions of consistency are no longer met. Therefore, we first analyze the generalization bounds of the SPO loss within our autoregressive model. Subsequently, the uniform calibration results in Liu and Grigas [2] are extended in the proposed model. Finally, we conduct experiments to empirically demonstrate the effectiveness of the SPO+ surrogate compared to the absolute loss and the least squares loss, especially when the cost vectors are determined by stationary dynamical systems and demonstrate the relationship between normalized regret and mixing coefficients.


Affordance-Driven Next-Best-View Planning for Robotic Grasping

arXiv.org Artificial Intelligence

Grasping occluded objects in cluttered environments is an essential component in complex robotic manipulation tasks. In this paper, we introduce an AffordanCE-driven Next-Best-View planning policy (ACE-NBV) that tries to find a feasible grasp for target object via continuously observing scenes from new viewpoints. This policy is motivated by the observation that the grasp affordances of an occluded object can be better-measured under the view when the view-direction are the same as the grasp view. Specifically, our method leverages the paradigm of novel view imagery to predict the grasps affordances under previously unobserved view, and select next observation view based on the highest imagined grasp quality of the target object. The experimental results in simulation and on a real robot demonstrate the effectiveness of the proposed affordance-driven next-best-view planning policy. Project page: https://sszxc.net/ace-nbv/.


Toward Global Sensing Quality Maximization: A Configuration Optimization Scheme for Camera Networks

arXiv.org Artificial Intelligence

The performance of a camera network monitoring a set of targets depends crucially on the configuration of the cameras. In this paper, we investigate the reconfiguration strategy for the parameterized camera network model, with which the sensing qualities of the multiple targets can be optimized globally and simultaneously. We first propose to use the number of pixels occupied by a unit-length object in image as a metric of the sensing quality of the object, which is determined by the parameters of the camera, such as intrinsic, extrinsic, and distortional coefficients. Then, we form a single quantity that measures the sensing quality of the targets by the camera network. This quantity further serves as the objective function of our optimization problem to obtain the optimal camera configuration. We verify the effectiveness of our approach through extensive simulations and experiments, and the results reveal its improved performance on the AprilTag detection tasks. Codes and related utilities for this work are open-sourced and available at https://github.com/sszxc/MultiCam-Simulation.