Goto

Collaborating Authors

 Fan, Zhong


Digital Player: Evaluating Large Language Models based Human-like Agent in Games

arXiv.org Artificial Intelligence

With the rapid advancement of Large Language Models (LLMs), LLM-based autonomous agents have shown the potential to function as digital employees, such as digital analysts, teachers, and programmers. In this paper, we develop an application-level testbed based on the open-source strategy game "Unciv", which has millions of active players, to enable researchers to build a "data flywheel" for studying human-like agents in the "digital players" task. This "Civilization"-like game features expansive decision-making spaces along with rich linguistic interactions such as diplomatic negotiations and acts of deception, posing significant challenges for LLM-based agents in terms of numerical reasoning and long-term planning. Another challenge for "digital players" is to generate human-like responses for social interaction, collaboration, and negotiation with human players. The open-source project can be found at https:/github.com/fuxiAIlab/CivAgent.


Data-driven battery operation for energy arbitrage using rainbow deep reinforcement learning

arXiv.org Artificial Intelligence

As the world seeks to become more sustainable, intelligent solutions are needed to increase the penetration of renewable energy. In this paper, the model-free deep reinforcement learning algorithm Rainbow Deep Q-Networks is used to control a battery in a small microgrid to perform energy arbitrage and more efficiently utilise solar and wind energy sources. The grid operates with its own demand and renewable generation based on a dataset collected at Keele University, as well as using dynamic energy pricing from a real wholesale energy market. Four scenarios are tested including using demand and price forecasting produced with local weather data. The algorithm and its subcomponents are evaluated against two continuous control benchmarks with Rainbow able to outperform all other method. This research shows the importance of using the distributional approach for reinforcement learning when working with complex environments and reward functions, as well as how it can be used to visualise and contextualise the agent's behaviour for real-world applications.


Federated learning with hierarchical clustering of local updates to improve training on non-IID data

arXiv.org Machine Learning

Federated learning (FL) is a well established method for performing machine learning tasks over massively distributed data. However in settings where data is distributed in a non-iid (not independent and identically distributed) fashion -- as is typical in real world situations -- the joint model produced by FL suffers in terms of test set accuracy and/or communication costs compared to training on iid data. We show that learning a single joint model is often not optimal in the presence of certain types of non-iid data. In this work we present a modification to FL by introducing a hierarchical clustering step (FL+HC) to separate clusters of clients by the similarity of their local updates to the global joint model. Once separated, the clusters are trained independently and in parallel on specialised models. We present a robust empirical analysis of the hyperparameters for FL+HC for several iid and non-iid settings. We show how FL+HC allows model training to converge in fewer communication rounds (significantly so under some non-iid settings) compared to FL without clustering. Additionally, FL+HC allows for a greater percentage of clients to reach a target accuracy compared to standard FL. Finally we make suggestions for good default hyperparameters to promote superior performing specialised models without modifying the the underlying federated learning communication protocol.