Fan, Xin
Personalized Fashion Recommendation with Image Attributes and Aesthetics Assessment
Chen, Chongxian, Mo, Fan, Fan, Xin, Yamana, Hayato
Personalized fashion recommendation is a difficult task because 1) the decisions are highly correlated with users' aesthetic appetite, which previous work frequently overlooks, and 2) many new items are constantly rolling out that cause strict cold-start problems in the popular identity (ID)-based recommendation methods. These new items are critical to recommend because of trend-driven consumerism. In this work, we aim to provide more accurate personalized fashion recommendations and solve the cold-start problem by converting available information, especially images, into two attribute graphs focusing on optimized image utilization and noise-reducing user modeling. Compared with previous methods that separate image and text as two components, the proposed method combines image and text information to create a richer attributes graph. Capitalizing on the advancement of large language and vision models, we experiment with extracting fine-grained attributes efficiently and as desired using two different prompts. Preliminary experiments on the IQON3000 dataset have shown that the proposed method achieves competitive accuracy compared with baselines.
Advancing Generalized Transfer Attack with Initialization Derived Bilevel Optimization and Dynamic Sequence Truncation
Liu, Yaohua, Gao, Jiaxin, Liu, Xuan, Jiao, Xianghao, Fan, Xin, Liu, Risheng
Transfer attacks generate significant interest for real-world black-box applications by crafting transferable adversarial examples through surrogate models. Whereas, existing works essentially directly optimize the single-level objective w.r.t. the surrogate model, which always leads to poor interpretability of attack mechanism and limited generalization performance over unknown victim models. In this work, we propose the \textbf{B}il\textbf{E}vel \textbf{T}ransfer \textbf{A}ttac\textbf{K} (BETAK) framework by establishing an initialization derived bilevel optimization paradigm, which explicitly reformulates the nested constraint relationship between the Upper-Level (UL) pseudo-victim attacker and the Lower-Level (LL) surrogate attacker. Algorithmically, we introduce the Hyper Gradient Response (HGR) estimation as an effective feedback for the transferability over pseudo-victim attackers, and propose the Dynamic Sequence Truncation (DST) technique to dynamically adjust the back-propagation path for HGR and reduce computational overhead simultaneously. Meanwhile, we conduct detailed algorithmic analysis and provide convergence guarantee to support non-convexity of the LL surrogate attacker. Extensive evaluations demonstrate substantial improvement of BETAK (e.g., $\mathbf{53.41}$\% increase of attack success rates against IncRes-v$2_{ens}$) against different victims and defense methods in targeted and untargeted attack scenarios. The source code is available at https://github.com/callous-youth/BETAK.
Learn from the Past: A Proxy based Adversarial Defense Framework to Boost Robustness
Liu, Yaohua, Gao, Jiaxin, Liu, Zhu, Jiao, Xianghao, Fan, Xin, Liu, Risheng
In light of the vulnerability of deep learning models to adversarial samples and the ensuing security issues, a range of methods, including Adversarial Training (AT) as a prominent representative, aimed at enhancing model robustness against various adversarial attacks, have seen rapid development. However, existing methods essentially assist the current state of target model to defend against parameter-oriented adversarial attacks with explicit or implicit computation burdens, which also suffers from unstable convergence behavior due to inconsistency of optimization trajectories. Diverging from previous work, this paper reconsiders the update rule of target model and corresponding deficiency to defend based on its current state. By introducing the historical state of the target model as a proxy, which is endowed with much prior information for defense, we formulate a two-stage update rule, resulting in a general adversarial defense framework, which we refer to as `LAST' ({\bf L}earn from the P{\bf ast}). Besides, we devise a Self Distillation (SD) based defense objective to constrain the update process of the proxy model without the introduction of larger teacher models. Experimentally, we demonstrate consistent and significant performance enhancements by refining a series of single-step and multi-step AT methods (e.g., up to $\bf 9.2\%$ and $\bf 20.5\%$ improvement of Robust Accuracy (RA) on CIFAR10 and CIFAR100 datasets, respectively) across various datasets, backbones and attack modalities, and validate its ability to enhance training stability and ameliorate catastrophic overfitting issues meanwhile.
Automated Learning for Deformable Medical Image Registration by Jointly Optimizing Network Architectures and Objective Functions
Fan, Xin, Li, Zi, Li, Ziyang, Wang, Xiaolin, Liu, Risheng, Luo, Zhongxuan, Huang, Hao
Deformable image registration plays a critical role in various tasks of medical image analysis. A successful registration algorithm, either derived from conventional energy optimization or deep networks requires tremendous efforts from computer experts to well design registration energy or to carefully tune network architectures for the specific type of medical data. To tackle the aforementioned problems, this paper proposes an automated learning registration algorithm (AutoReg) that cooperatively optimizes both architectures and their corresponding training objectives, enabling non-computer experts, e.g., medical/clinical users, to conveniently find off-the-shelf registration algorithms for diverse scenarios. Specifically, we establish a triple-level framework to deduce registration network architectures and objectives with an auto-searching mechanism and cooperating optimization. We conduct image registration experiments on multi-site volume datasets and various registration tasks. Extensive results demonstrate that our AutoReg may automatically learn an optimal deep registration network for given volumes and achieve state-of-the-art performance, also significantly improving computation efficiency than the mainstream UNet architectures (from 0.558 to 0.270 seconds for a 3D image pair on the same configuration).
A Bridging Framework for Model Optimization and Deep Propagation
Liu, Risheng, Cheng, Shichao, liu, xiaokun, Ma, Long, Fan, Xin, Luo, Zhongxuan
Optimizing task-related mathematical model is one of the most fundamental methodologies in statistic and learning areas. However, generally designed schematic iterations may hard to investigate complex data distributions in real-world applications. Recently, training deep propagations (i.e., networks) has gained promising performance in some particular tasks. Unfortunately, existing networks are often built in heuristic manners, thus lack of principled interpretations and solid theoretical supports. In this work, we provide a new paradigm, named Propagation and Optimization based Deep Model (PODM), to bridge the gaps between these different mechanisms (i.e., model optimization and deep propagation). On the one hand, we utilize PODM as a deeply trained solver for model optimization. Different from these existing network based iterations, which often lack theoretical investigations, we provide strict convergence analysis for PODM in the challenging nonconvex and nonsmooth scenarios. On the other hand, by relaxing the model constraints and performing end-to-end training, we also develop a PODM based strategy to integrate domain knowledge (formulated as models) and real data distributions (learned by networks), resulting in a generic ensemble framework for challenging real-world applications. Extensive experiments verify our theoretical results and demonstrate the superiority of PODM against these state-of-the-art approaches.
Proximal Alternating Direction Network: A Globally Converged Deep Unrolling Framework
Liu, Risheng (Dalian University of Technology) | Fan, Xin (Dalian University of Technology) | Cheng, Shichao (Dalian University of Technology) | Wang, Xiangyu (Dalian University of Technology) | Luo, Zhongxuan (Dalian University of Technology)
Deep learning models have gained great success in many real-world applications. However, most existing networks are typically designed in heuristic manners, thus lack of rigorous mathematical principles and derivations. Several recent studies build deep structures by unrolling a particular optimization model that involves task information. Unfortunately, due to the dynamic nature of network parameters, their resultant deep propagation networks do not possess the nice convergence property as the original optimization scheme does. This paper provides a novel proximal unrolling framework to establish deep models by integrating experimentally verified network architectures and rich cues of the tasks. More importantly,we prove in theory that 1) the propagation generated by our unrolled deep model globally converges to a critical-point of a given variational energy, and 2) the proposed framework is still able to learn priors from training data to generate a convergent propagation even when task information is only partially available. Indeed, these theoretical results are the best we can ask for, unless stronger assumptions are enforced. Extensive experiments on various real-world applications verify the theoretical convergence and demonstrate the effectiveness of designed deep models.
Self-Reinforced Cascaded Regression for Face Alignment
Fan, Xin (Dalian University of Technology) | Liu, Risheng (Dalian University of Technology) | Huyan, Kang (Dalian University of Technology) | Feng, Yuyao (Dalian University of Technology) | Luo, Zhongxuan (Dalian University of Technology)
Cascaded regression is prevailing in face alignment thanks to its accurate and robust localization of facial landmarks, but typically demands numerous annotated training examples of low discrepancy between shape-indexed features and shape updates. In this paper, we propose a self-reinforced strategy that iteratively expands the quantity and improves the quality of training examples, thus upgrading the performance of cascaded regression itself. The reinforced term evaluates the example quality upon the consistence on both local appearance and global geometry of human faces, and constitutes the example evolution by the philosophy of "survival of the fittest." We train a set of discriminative classifiers, each associated with one landmark label, to prune those examples with inconsistent local appearance, and further validate the geometric relationship among groups of labeled landmarks against the common global geometry derived from a projective invariant. We embed this generic strategy into two typical cascaded regressions, and the alignment results on several benchmark data sets demonstrate the effectiveness of training regressions with automatic example prediction and evolution starting from a small subset.
Fast Online Incremental Learning on Mixture Streaming Data
Wang, Yi (Dalian University of Technology) | Fan, Xin (Dalian University of Technology) | Luo, Zhongxuan (Dalian University of Technology) | Wang, Tianzhu ( No. 254, Deta Leisure Town, Jinzhou New District, Dalian ) | Min, Maomao (Dalian University of Technology) | Luo, Jiebo (University of Rochester)
The explosion of streaming data poses challenges to feature learning methods including linear discriminant analysis (LDA). Many existing LDA algorithms are not efficient enough to incrementally update with samples that sequentially arrive in various manners. First, we propose a new fast batch LDA (FLDA/QR) learning algorithm that uses the cluster centers to solve a lower triangular system that is optimized by the Cholesky-factorization. To take advantage of the intrinsically incremental mechanism of the matrix, we further develop an exact incremental algorithm (IFLDA/QR). The Gram-Schmidt process with reorthogonalization in IFLDA/QR significantly saves the space and time expenses compared with the rank-one QR-updating of most existing methods. IFLDA/QR is able to handle streaming data containing 1) new labeled samples in the existing classes, 2) samples of an entirely new (novel) class, and more significantly, 3) a chunk of examples mixed with those in 1) and 2). Both theoretical analysis and numerical experiments have demonstrated much lower space and time costs (2~10 times faster) than the state of the art, with comparable classification accuracy.