Fan, Lei
MSCrackMamba: Leveraging Vision Mamba for Crack Detection in Fused Multispectral Imagery
Zhu, Qinfeng, Fang, Yuan, Fan, Lei
Crack detection is a critical task in structural health monitoring, aimed at assessing the structural integrity of bridges, buildings, and roads to prevent potential failures. Vision-based crack detection has become the mainstream approach due to its ease of implementation and effectiveness. Fusing infrared (IR) channels with red, green and blue (RGB) channels can enhance feature representation and thus improve crack detection. However, IR and RGB channels often differ in resolution. To align them, higher-resolution RGB images typically need to be downsampled to match the IR image resolution, which leads to the loss of fine details. Moreover, crack detection performance is restricted by the limited receptive fields and high computational complexity of traditional image segmentation networks. Inspired by the recently proposed Mamba neural architecture, this study introduces a two-stage paradigm called MSCrackMamba, which leverages Vision Mamba along with a super-resolution network to address these challenges. Specifically, to align IR and RGB channels, we first apply super-resolution to IR channels to match the resolution of RGB channels for data fusion. Vision Mamba is then adopted as the backbone network, while UperNet is employed as the decoder for crack detection. Our approach is validated on the large-scale Crack Detection dataset Crack900, demonstrating an improvement of 3.55% in mIoU compared to the best-performing baseline methods.
Boundary-Guided Learning for Gene Expression Prediction in Spatial Transcriptomics
Qu, Mingcheng, Wu, Yuncong, Di, Donglin, Su, Anyang, Su, Tonghua, Song, Yang, Fan, Lei
Spatial transcriptomics (ST) has emerged as an advanced technology that provides spatial context to gene expression. Recently, deep learning-based methods have shown the capability to predict gene expression from WSI data using ST data. Existing approaches typically extract features from images and the neighboring regions using pretrained models, and then develop methods to fuse this information to generate the final output. However, these methods often fail to account for the cellular structure similarity, cellular density and the interactions within the microenvironment. In this paper, we propose a framework named BG-TRIPLEX, which leverages boundary information extracted from pathological images as guiding features to enhance gene expression prediction from WSIs. Specifically, our model consists of three branches: the spot, in-context and global branches. In the spot and in-context branches, boundary information, including edge and nuclei characteristics, is extracted using pretrained models. These boundary features guide the learning of cellular morphology and the characteristics of microenvironment through Multi-Head Cross-Attention. Finally, these features are integrated with global features to predict the final output. Extensive experiments were conducted on three public ST datasets. The results demonstrate that our BG-TRIPLEX consistently outperforms existing methods in terms of Pearson Correlation Coefficient (PCC). This method highlights the crucial role of boundary features in understanding the complex interactions between WSI and gene expression, offering a promising direction for future research.
Evaluating the Impact of Point Cloud Colorization on Semantic Segmentation Accuracy
Zhu, Qinfeng, Cao, Jiaze, Cai, Yuanzhi, Fan, Lei
Point cloud semantic segmentation, the process of classifying each point into predefined categories, is essential for 3D scene understanding. While image-based segmentation is widely adopted due to its maturity, methods relying solely on RGB information often suffer from degraded performance due to color inaccuracies. Recent advancements have incorporated additional features such as intensity and geometric information, yet RGB channels continue to negatively impact segmentation accuracy when errors in colorization occur. Despite this, previous studies have not rigorously quantified the effects of erroneous colorization on segmentation performance. In this paper, we propose a novel statistical approach to evaluate the impact of inaccurate RGB information on image-based point cloud segmentation. We categorize RGB inaccuracies into two types: incorrect color information and similar color information. Our results demonstrate that both types of color inaccuracies significantly degrade segmentation accuracy, with similar color errors particularly affecting the extraction of geometric features. These findings highlight the critical need to reassess the role of RGB information in point cloud segmentation and its implications for future algorithm design.
Seg-LSTM: Performance of xLSTM for Semantic Segmentation of Remotely Sensed Images
Zhu, Qinfeng, Cai, Yuanzhi, Fan, Lei
Recent advancements in autoregressive networks with linear complexity have driven significant research progress, demonstrating exceptional performance in large language models. A representative model is the Extended Long Short-Term Memory (xLSTM), which incorporates gating mechanisms and memory structures, performing comparably to Transformer architectures in long-sequence language tasks. Autoregressive networks such as xLSTM can utilize image serialization to extend their application to visual tasks such as classification and segmentation. Although existing studies have demonstrated Vision-LSTM's impressive results in image classification, its performance in image semantic segmentation remains unverified. Our study represents the first attempt to evaluate the effectiveness of Vision-LSTM in the semantic segmentation of remotely sensed images. This evaluation is based on a specifically designed encoder-decoder architecture named Seg-LSTM, and comparisons with state-of-the-art segmentation networks. Our study found that Vision-LSTM's performance in semantic segmentation was limited and generally inferior to Vision-Transformers-based and Vision-Mamba-based models in most comparative tests. Future research directions for enhancing Vision-LSTM are recommended. The source code is available from https://github.com/zhuqinfeng1999/Seg-LSTM.
Interpretability of Statistical, Machine Learning, and Deep Learning Models for Landslide Susceptibility Mapping in Three Gorges Reservoir Area
Chen, Cheng, Fan, Lei
Landslide susceptibility mapping (LSM) is crucial for identifying high-risk areas and informing prevention strategies. This study investigates the interpretability of statistical, machine learning (ML), and deep learning (DL) models in predicting landslide susceptibility. This is achieved by incorporating various relevant interpretation methods and two types of input factors: a comprehensive set of 19 contributing factors that are statistically relevant to landslides, as well as a dedicated set of 9 triggering factors directly associated with triggering landslides. Given that model performance is a crucial metric in LSM, our investigations into interpretability naturally involve assessing and comparing LSM accuracy across different models considered. In our investigation, the convolutional neural network model achieved the highest accuracy (0.8447 with 19 factors; 0.8048 with 9 factors), while Extreme Gradient Boosting and Support Vector Machine also demonstrated strong predictive capabilities, outperforming conventional statistical models. These findings indicate that DL and sophisticated ML algorithms can effectively capture the complex relationships between input factors and landslide occurrence. However, the interpretability of predictions varied among different models, particularly when using the broader set of 19 contributing factors. Explanation methods like SHAP, LIME, and DeepLIFT also led to variations in interpretation results. Using a comprehensive set of 19 contributing factors improved prediction accuracy but introduced complexities and inconsistency in model interpretations. Focusing on a dedicated set of 9 triggering factors sacrificed some predictive power but enhanced interpretability, as evidenced by more consistent key factors identified across various models and alignment with the findings of field investigation reports....
Evidential Active Recognition: Intelligent and Prudent Open-World Embodied Perception
Fan, Lei, Liang, Mingfu, Li, Yunxuan, Hua, Gang, Wu, Ying
Active recognition enables robots to intelligently explore novel observations, thereby acquiring more information while circumventing undesired viewing conditions. Recent approaches favor learning policies from simulated or collected data, wherein appropriate actions are more frequently selected when the recognition is accurate. However, most recognition modules are developed under the closed-world assumption, which makes them ill-equipped to handle unexpected inputs, such as the absence of the target object in the current observation. To address this issue, we propose treating active recognition as a sequential evidence-gathering process, providing by-step uncertainty quantification and reliable prediction under the evidence combination theory. Additionally, the reward function developed in this paper effectively characterizes the merit of actions when operating in open-world environments. To evaluate the performance, we collect a dataset from an indoor simulator, encompassing various recognition challenges such as distance, occlusion levels, and visibility. Through a series of experiments on recognition and robustness analysis, we demonstrate the necessity of introducing uncertainties to active recognition and the superior performance of the proposed method.
PolicyGPT: Automated Analysis of Privacy Policies with Large Language Models
Tang, Chenhao, Liu, Zhengliang, Ma, Chong, Wu, Zihao, Li, Yiwei, Liu, Wei, Zhu, Dajiang, Li, Quanzheng, Li, Xiang, Liu, Tianming, Fan, Lei
Privacy policies serve as the primary conduit through which online service providers inform users about their data collection and usage procedures. However, in a bid to be comprehensive and mitigate legal risks, these policy documents are often quite verbose. In practical use, users tend to click the Agree button directly rather than reading them carefully. This practice exposes users to risks of privacy leakage and legal issues. Recently, the advent of Large Language Models (LLM) such as ChatGPT and GPT-4 has opened new possibilities for text analysis, especially for lengthy documents like privacy policies. In this study, we investigate a privacy policy text analysis framework PolicyGPT based on the LLM. This framework was tested using two datasets. The first dataset comprises of privacy policies from 115 websites, which were meticulously annotated by legal experts, categorizing each segment into one of 10 classes. The second dataset consists of privacy policies from 304 popular mobile applications, with each sentence manually annotated and classified into one of another 10 categories. Under zero-shot learning conditions, PolicyGPT demonstrated robust performance. For the first dataset, it achieved an accuracy rate of 97%, while for the second dataset, it attained an 87% accuracy rate, surpassing that of the baseline machine learning and neural network models.
Selection of contributing factors for predicting landslide susceptibility using machine learning and deep learning models
Chen, Cheng, Fan, Lei
Landslides are a common natural disaster that can cause casualties, property safety threats and economic losses. Therefore, it is important to understand or predict the probability of landslide occurrence at potentially risky sites. A commonly used means is to carry out a landslide susceptibility assessment based on a landslide inventory and a set of landslide contributing factors. This can be readily achieved using machine learning (ML) models such as logistic regression (LR), support vector machine (SVM), random forest (RF), extreme gradient boosting (Xgboost), or deep learning (DL) models such as convolutional neural network (CNN) and long short time memory (LSTM). As the input data for these models, landslide contributing factors have varying influences on landslide occurrence. Therefore, it is logically feasible to select more important contributing factors and eliminate less relevant ones, with the aim of increasing the prediction accuracy of these models. However, selecting more important factors is still a challenging task and there is no generally accepted method. Furthermore, the effects of factor selection using various methods on the prediction accuracy of ML and DL models are unclear. In this study, the impact of the selection of contributing factors on the accuracy of landslide susceptibility predictions using ML and DL models was investigated. Four methods for selecting contributing factors were considered for all the aforementioned ML and DL models, which included Information Gain Ratio (IGR), Recursive Feature Elimination (RFE), Particle Swarm Optimization (PSO), Least Absolute Shrinkage and Selection Operators (LASSO) and Harris Hawk Optimization (HHO). In addition, autoencoder-based factor selection methods for DL models were also investigated. To assess their performances, an exhaustive approach was adopted,...