Goto

Collaborating Authors

 Fan, James


Poker-CNN: A Pattern Learning Strategy for Making Draws and Bets in Poker Games Using Convolutional Networks

AAAI Conferences

Poker is a family of card games that includes many varia- tions. We hypothesize that most poker games can be solved as a pattern matching problem, and propose creating a strong poker playing system based on a unified poker representa- tion. Our poker player learns through iterative self-play, and improves its understanding of the game by training on the results of its previous actions without sophisticated domain knowledge. We evaluate our system on three poker games: single player video poker, two-player Limit Texas Holdโ€™em, and finally two-player 2-7 triple draw poker. We show that our model can quickly learn patterns in these very different poker games while it improves from zero knowledge to a competi- tive player against human experts. The contributions of this paper include: (1) a novel represen- tation for poker games, extendable to different poker vari- ations, (2) a Convolutional Neural Network (CNN) based learning model that can effectively learn the patterns in three different games, and (3) a self-trained system that signif- icantly beats the heuristic-based program on which it is trained, and our system is competitive against human expert players.


Leveraging Wikipedia Characteristics for Search and Candidate Generation in Question Answering

AAAI Conferences

Most existing Question Answering (QA) systems adopt a type-and-generate approach to candidate generation that relies on a pre-defined domain ontology. This paper describes a type independent search and candidate generation paradigm for QA that leverages Wikipedia characteristics. This approach is particularly useful for adapting QA systems to domains where reliable answer type identification and type-based answer extraction are not available. We present a three-pronged search approach motivated by relations an answer-justifying title-oriented document may have with the question/answer pair. We further show how Wikipedia metadata such as anchor texts and redirects can be utilized to effectively extract candidate answers from search results without a type ontology. Our experimental results show that our strategies obtained high binary recall in both search and candidate generation on TREC questions, a domain that has mature answer type extraction technology, as well as on Jeopardy! questions, a domain without such technology. Our high-recall search and candidate generation approach has also led to high overall QA performance in Watson, our end-to-end system.


Building Watson: An Overview of the DeepQA Project

AI Magazine

IBM Research undertook a challenge to build a computer system that could compete at the human champion level in real time on the American TV Quiz show, Jeopardy! The extent of the challenge includes fielding a real-time automatic contestant on the show, not merely a laboratory exercise. The Jeopardy! Challenge helped us address requirements that led to the design of the DeepQA architecture and the implementation of Watson. After 3 years of intense research and development by a core team of about 20 researches, Watson is performing at human expert-levels in terms of precision, confidence and speed at the Jeopardy! Quiz show. Our results strongly suggest that DeepQA is an effective and extensible architecture that may be used as a foundation for combining, deploying, evaluating and advancing a wide range of algorithmic techniques to rapidly advance the field of QA.


Project Halo: Towards a Digital Aristotle

AI Magazine

Vulcan selected three teams, each of which was to formally represent 70 pages from the advanced placement (AP) chemistry syllabus and deliver knowledge-based systems capable of answering questions on that syllabus. The evaluation quantified each system's coverage of the syllabus in terms of its ability to answer novel, previously unseen questions and to provide human- readable answer justifications. These justifications will play a critical role in building user trust in the question-answering capabilities of Digital Aristotle. This article presents the motivation and longterm goals of Project Halo, describes in detail the six-month first phase of the project -- the Halo Pilot -- its KR&R challenge, empirical evaluation, results, and failure analysis.


Project Halo: Towards a Digital Aristotle

AI Magazine

Project Halo is a multistaged effort, sponsored by Vulcan Inc, aimed at creating Digital Aristotle, an application that will encompass much of the world's scientific knowledge and be capable of applying sophisticated problem solving to answer novel questions. Vulcan envisions two primary roles for Digital Aristotle: as a tutor to instruct students in the sciences and as an interdisciplinary research assistant to help scientists in their work. As a first step towards this goal, we have just completed a six-month pilot phase designed to assess the state of the art in applied knowledge representation and reasoning (KR&/R). Vulcan selected three teams, each of which was to formally represent 70 pages from the advanced placement (AP) chemistry syllabus and deliver knowledge-based systems capable of answering questions on that syllabus. The evaluation quantified each system's coverage of the syllabus in terms of its ability to answer novel, previously unseen questions and to provide human- readable answer justifications. These justifications will play a critical role in building user trust in the question-answering capabilities of Digital Aristotle. Prior to the final evaluation, a "failure taxonomy' was collaboratively developed in an attempt to standardize failure analysis and to facilitate cross-platform comparisons. Despite differences in approach, all three systems did very well on the challenge, achieving performance comparable to the human median. The analysis also provided key insights into how the approaches might be scaled, while at the same time suggesting how the cost of producing such systems might be reduced. This outcome leaves us highly optimistic that the technical challenges facing this effort in the years to come can be identified and overcome. This article presents the motivation and longterm goals of Project Halo, describes in detail the six-month first phase of the project -- the Halo Pilot -- its KR&R challenge, empirical evaluation, results, and failure analysis. The pilot's outcome is used to define challenges for the next phase of the project and beyond.