Goto

Collaborating Authors

 Fan, Bo


Traj-LLM: A New Exploration for Empowering Trajectory Prediction with Pre-trained Large Language Models

arXiv.org Artificial Intelligence

Predicting the future trajectories of dynamic traffic actors is a cornerstone task in autonomous driving. Though existing notable efforts have resulted in impressive performance improvements, a gap persists in scene cognitive and understanding of the complex traffic semantics. This paper proposes Traj-LLM, the first to investigate the potential of using Large Language Models (LLMs) without explicit prompt engineering to generate future motion from agents' past/observed trajectories and scene semantics. Traj-LLM starts with sparse context joint coding to dissect the agent and scene features into a form that LLMs understand. On this basis, we innovatively explore LLMs' powerful comprehension abilities to capture a spectrum of high-level scene knowledge and interactive information. Emulating the human-like lane focus cognitive function and enhancing Traj-LLM's scene comprehension, we introduce lane-aware probabilistic learning powered by the pioneering Mamba module. Finally, a multi-modal Laplace decoder is designed to achieve scene-compliant multi-modal predictions. Extensive experiments manifest that Traj-LLM, fortified by LLMs' strong prior knowledge and understanding prowess, together with lane-aware probability learning, outstrips state-of-the-art methods across evaluation metrics. Moreover, the few-shot analysis further substantiates Traj-LLM's performance, wherein with just 50% of the dataset, it outperforms the majority of benchmarks relying on complete data utilization. This study explores equipping the trajectory prediction task with advanced capabilities inherent in LLMs, furnishing a more universal and adaptable solution for forecasting agent motion in a new way.


Towards Attributions of Input Variables in a Coalition

arXiv.org Artificial Intelligence

This paper aims to develop a new attribution method to explain the conflict between individual variables' attributions and their coalition's attribution from a fully new perspective. First, we find that the Shapley value can be reformulated as the allocation of Harsanyi interactions encoded by the AI model. Second, based the re-allocation of interactions, we extend the Shapley value to the attribution of coalitions. Third, we derive the fundamental mechanism behind the conflict. This conflict comes from the interaction containing partial variables in their coalition.