Falquet, Gilles
Handling Wikidata Qualifiers in Reasoning
Aljalbout, Sahar, Falquet, Gilles, Buchs, Didier
Wikidata is a knowledge graph increasingly adopted by many communities for diverse applications. Wikidata statements are annotated with qualifier-value pairs that are used to depict information, such as the validity context of the statement, its causality, provenances, etc. Handling the qualifiers in reasoning is a challenging problem. When defining inference rules (in particular, rules on ontological properties (x subclass of y, z instance of x, etc.)), one must consider the qualifiers, as most of them participate in the semantics of the statements. This poses a complex problem because a) there is a massive number of qualifiers, and b) the qualifiers of the inferred statement are often a combination of the qualifiers in the rule condition. In this work, we propose to address this problem by a) defining a categorization of the qualifiers b) formalizing the Wikidata model with a many-sorted logical language; the sorts of this language are the qualifier categories. We couple this logic with an algebraic specification that provides a means for effectively handling qualifiers in inference rules. Using Wikidata ontological properties, we show how to use the MSL and specification to reason on qualifiers. Finally, we discuss the methodology for practically implementing the work and present a prototype implementation. The work can be naturally extended, thanks to the extensibility of the many-sorted algebraic specification, to cover more qualifiers in the specification, such as uncertain time, recurring events, geographic locations, and others.
An ontology for the formalization and visualization of scientific knowledge
Daponte, Vincenzo, Falquet, Gilles
The construction of an ontology of scientific knowledge objects, presented here, is part of the development of an approach oriented towards the visualization of scientific knowledge. It is motivated by the fact that the concepts that are used to organize scientific knowledge (theorem, law, experience, proof, etc.) appear in existing ontologies but that none of these ontologies is centered on this topic and presents them in a simple and easily understandable organization. This ontology has been constructed by 1) selecting concepts that appear in high level ontologies or in ontologies of knowledge objects of specific fields and 2) interviewing scientists in different fields. We have aligned this ontology with some of the sources used, which has allowed us to verify its consistency with respect to them. The validation of the ontology consists in using it to formalize knowledge from various sources, which we have begun to do in the field of physics. The access to scientific knowledge, whether general or factual, must necessarily involve a visual, auditory or other presentation that appeals to one or more senses of the human being.
Towards an Integrated Visualization Of Semantically Enriched 3D City Models: An Ontology of 3D Visualization Techniques
Métral, Claudine, Ghoula, Nizar, Falquet, Gilles
3D city models - which represent in 3 dimensions the geometric elements of a city - are increasingly used for an intended wide range of applications. Such uses are made possible by using semantically enriched 3D city models and by presenting such enriched 3D city models in a way that allows decision-making processes to be carried out from the best choices among sets of objectives, and across issues and scales. In order to help in such a decision-making process we have defined a framework to find the best visualization technique(s) for a set of potentially heterogeneous data that have to be visualized within the same 3D city model, in order to perform a given task in a specific context. We have chosen an ontology-based approach. This approach and the specification and use of the resulting ontology of 3D visualization techniques are described in this paper.