Fagbohungbe, Omobayode
Analog In-memory Training on General Non-ideal Resistive Elements: The Impact of Response Functions
Wu, Zhaoxian, Xiao, Quan, Gokmen, Tayfun, Fagbohungbe, Omobayode, Chen, Tianyi
As the economic and environmental costs of training and deploying large vision or language models increase dramatically, analog in-memory computing (AIMC) emerges as a promising energy-efficient solution. However, the training perspective, especially its training dynamic, is underexplored. In AIMC hardware, the trainable weights are represented by the conductance of resistive elements and updated using consecutive electrical pulses. Among all the physical properties of resistive elements, the response to the pulses directly affects the training dynamics. This paper first provides a theoretical foundation for gradient-based training on AIMC hardware and studies the impact of response functions. We demonstrate that noisy update and asymmetric response functions negatively impact Analog SGD by imposing an implicit penalty term on the objective. To overcome the issue, Tiki-Taka, a residual learning algorithm, converges exactly to a critical point by optimizing a main array and a residual array bilevelly. The conclusion is supported by simulations validating our theoretical insights.
Using the IBM Analog In-Memory Hardware Acceleration Kit for Neural Network Training and Inference
Gallo, Manuel Le, Lammie, Corey, Buechel, Julian, Carta, Fabio, Fagbohungbe, Omobayode, Mackin, Charles, Tsai, Hsinyu, Narayanan, Vijay, Sebastian, Abu, Maghraoui, Kaoutar El, Rasch, Malte J.
Analog In-Memory Computing (AIMC) is a promising approach to reduce the latency and energy consumption of Deep Neural Network (DNN) inference and training. However, the noisy and non-linear device characteristics, and the non-ideal peripheral circuitry in AIMC chips, require adapting DNNs to be deployed on such hardware to achieve equivalent accuracy to digital computing. In this tutorial, we provide a deep dive into how such adaptations can be achieved and evaluated using the recently released IBM Analog Hardware Acceleration Kit (AIHWKit), freely available at https://github.com/IBM/aihwkit. The AIHWKit is a Python library that simulates inference and training of DNNs using AIMC. We present an in-depth description of the AIHWKit design, functionality, and best practices to properly perform inference and training. We also present an overview of the Analog AI Cloud Composer, that provides the benefits of using the AIHWKit simulation platform in a fully managed cloud setting. Finally, we show examples on how users can expand and customize AIHWKit for their own needs. This tutorial is accompanied by comprehensive Jupyter Notebook code examples that can be run using AIHWKit, which can be downloaded from https://github.com/IBM/aihwkit/tree/master/notebooks/tutorial.
Benchmarking Inference Performance of Deep Learning Models on Analog Devices
Fagbohungbe, Omobayode, Qian, Lijun
Analog hardware implemented deep learning models are promising for computation and energy constrained systems such as edge computing devices. However, the analog nature of the device and the associated many noise sources will cause changes to the value of the weights in the trained deep learning models deployed on such devices. In this study, systematic evaluation of the inference performance of trained popular deep learning models for image classification deployed on analog devices has been carried out, where additive white Gaussian noise has been added to the weights of the trained models during inference. It is observed that deeper models and models with more redundancy in design such as VGG are more robust to the noise in general. However, the performance is also affected by the design philosophy of the model, the detailed structure of the model, the exact machine learning task, as well as the datasets.
Efficient Privacy Preserving Edge Computing Framework for Image Classification
Fagbohungbe, Omobayode, Reza, Sheikh Rufsan, Dong, Xishuang, Qian, Lijun
In order to extract knowledge from the large data collected by edge devices, traditional cloud based approach that requires data upload may not be feasible due to communication bandwidth limitation as well as privacy and security concerns of end users. To address these challenges, a novel privacy preserving edge computing framework is proposed in this paper for image classification. Specifically, autoencoder will be trained unsupervised at each edge device individually, then the obtained latent vectors will be transmitted to the edge server for the training of a classifier. This framework would reduce the communications overhead and protect the data of the end users. Comparing to federated learning, the training of the classifier in the proposed framework does not subject to the constraints of the edge devices, and the autoencoder can be trained independently at each edge device without any server involvement. Furthermore, the privacy of the end users' data is protected by transmitting latent vectors without additional cost of encryption. Experimental results provide insights on the image classification performance vs. various design parameters such as the data compression ratio of the autoencoder and the model complexity.