Goto

Collaborating Authors

 Fadnis, Kshitij


MTRAG: A Multi-Turn Conversational Benchmark for Evaluating Retrieval-Augmented Generation Systems

arXiv.org Artificial Intelligence

Retrieval-augmented generation (RAG) has recently become a very popular task for Large Language Models (LLMs). Evaluating them on multi-turn RAG conversations, where the system is asked to generate a response to a question in the context of a preceding conversation is an important and often overlooked task with several additional challenges. We present MTRAG: an end-to-end human-generated multi-turn RAG benchmark that reflects several real-world properties across diverse dimensions for evaluating the full RAG pipeline. MTRAG contains 110 conversations averaging 7.7 turns each across four domains for a total of 842 tasks. We also explore automation paths via synthetic data and LLM-as-a-Judge evaluation. Our human and automatic evaluations show that even state-of-the-art LLM RAG systems struggle on MTRAG. We demonstrate the need for strong retrieval and generation systems that can handle later turns, unanswerable questions, non-standalone questions, and multiple domains. MTRAG is available at https://github.com/ibm/mt-rag-benchmark.


PrimeQA: The Prime Repository for State-of-the-Art Multilingual Question Answering Research and Development

arXiv.org Artificial Intelligence

The field of Question Answering (QA) has made remarkable progress in recent years, thanks to the advent of large pre-trained language models, newer realistic benchmark datasets with leaderboards, and novel algorithms for key components such as retrievers and readers. In this paper, we introduce PRIMEQA: a one-stop and open-source QA repository with an aim to democratize QA re-search and facilitate easy replication of state-of-the-art (SOTA) QA methods. PRIMEQA supports core QA functionalities like retrieval and reading comprehension as well as auxiliary capabilities such as question generation.It has been designed as an end-to-end toolkit for various use cases: building front-end applications, replicating SOTA methods on pub-lic benchmarks, and expanding pre-existing methods. PRIMEQA is available at : https://github.com/primeqa.


CLAI: A Platform for AI Skills on the Command Line

arXiv.org Artificial Intelligence

This paper reports on the open source project CLAI (Command Line AI), aimed at bringing the power of AI to the command line interface. The platform sets up the CLI as a new environment for AI researchers to conquer by surfacing the command line as a generic environment that researchers can interface to using a simple sense-act API much like the traditional AI agent architecture. In this paper, we discuss the design and implementation of the platform in detail, through illustrative use cases of new end user interaction patterns enabled by this design, and through quantitative evaluation of the system footprint of a CLAI-enabled terminal. We also report on some early user feedback on its features from an internal survey.


Knowledge-incorporating ESIM models for Response Selection in Retrieval-based Dialog Systems

arXiv.org Artificial Intelligence

Goal-oriented dialog systems, which can be trained end-to-end without manually encoding domain-specific features, show tremendous promise in the customer support use-case e.g. flight booking, hotel reservation, technical support, student advising etc. These dialog systems must learn to interact with external domain knowledge to achieve the desired goal e.g. recommending courses to a student, booking a table at a restaurant etc. This paper presents extended Enhanced Sequential Inference Model (ESIM) models: a) K-ESIM (Knowledge-ESIM), which incorporates the external domain knowledge and b) T-ESIM (Targeted-ESIM), which leverages information from similar conversations to improve the prediction accuracy. Our proposed models and the baseline ESIM model are evaluated on the Ubuntu and Advising datasets in the Sentence Selection track of the latest Dialog System Technology Challenge (DSTC7), where the goal is to find the correct next utterance, given a partial conversation, from a set of candidates. Our preliminary results suggest that incorporating external knowledge sources and leveraging information from similar dialogs leads to performance improvements for predicting the next utterance.