Goto

Collaborating Authors

 Fabrizio, Jonathan


Easy real-time collision detection

arXiv.org Artificial Intelligence

This article presents an easy distance field-based collision detection scheme to detect collisions of an object with its environment. Through the clever use of back-face culling and z-buffering, the solution is precise and very easy to implement. Since the complete scheme relies on the graphics pipeline, the collision detection is performed by the GPU. It is easy to use and only requires the meshes of the object and the scene; it does not rely on special representations. It can natively handle collision with primitives emitted directly on the pipeline. Our scheme is efficient and we expose many possible variants (especially an adaptation to certain particle systems). The main limitation of our scheme is that it imposes some restrictions on the shape of the considered objects - but not on their environment. We evaluate our scheme by first, comparing with the FCL, second, testing a more complete scene (involving geometry shader, tessellation and compute shader) and last, illustrating with a particle system.


Identifying the Best Machine Learning Algorithms for Brain Tumor Segmentation, Progression Assessment, and Overall Survival Prediction in the BRATS Challenge

arXiv.org Artificial Intelligence

Gliomas are the most common primary brain malignancies, with different degrees of aggressiveness, variable prognosis and various heterogeneous histologic sub-regions, i.e., peritumoral edematous/invaded tissue, necrotic core, active and non-enhancing core. This intrinsic heterogeneity is also portrayed in their radio-phenotype, as their sub-regions are depicted by varying intensity profiles disseminated across multi-parametric magnetic resonance imaging (mpMRI) scans, reflecting varying biological properties. Their heterogeneous shape, extent, and location are some of the factors that make these tumors difficult to resect, and in some cases inoperable. The amount of resected tumor is a factor also considered in longitudinal scans, when evaluating the apparent tumor for potential diagnosis of progression. Furthermore, there is mounting evidence that accurate segmentation of the various tumor sub-regions can offer the basis for quantitative image analysis towards prediction of patient overall survival. This study assesses the state-of-the-art machine learning (ML) methods used for brain tumor image analysis in mpMRI scans, during the last seven instances of the International Brain Tumor Segmentation (BraTS) challenge, i.e. 2012-2018. Specifically, we focus on i) evaluating segmentations of the various glioma sub-regions in pre-operative mpMRI scans, ii) assessing potential tumor progression by virtue of longitudinal growth of tumor sub-regions, beyond use of the RECIST criteria, and iii) predicting the overall survival from pre-operative mpMRI scans of patients that undergone gross total resection. Finally, we investigate the challenge of identifying the best ML algorithms for each of these tasks, considering that apart from being diverse on each instance of the challenge, the multi-institutional mpMRI BraTS dataset has also been a continuously evolving/growing dataset.