Goto

Collaborating Authors

 Fabio T. Ramos


Spatio-Temporal Hilbert Maps for Continuous Occupancy Representation in Dynamic Environments

Neural Information Processing Systems

We consider the problem of building continuous occupancy representations in dynamic environments for robotics applications. The problem has hardly been discussed previously due to the complexity of patterns in urban environments, which have both spatial and temporal dependencies. We address the problem as learning a kernel classifier on an efficient feature space. The key novelty of our approach is the incorporation of variations in the time domain into the spatial domain. We propose a method to propagate motion uncertainty into the kernel using a hierarchical model. The main benefit of this approach is that it can directly predict the occupancy state of the map in the future from past observations, being a valuable tool for robot trajectory planning under uncertainty. Our approach preserves the main computational benefits of static Hilbert maps -- using stochastic gradient descent for fast optimization of model parameters and incremental updates as new data are captured. Experiments conducted in road intersections of an urban environment demonstrated that spatio-temporal Hilbert maps can accurately model changes in the map while outperforming other techniques on various aspects.


Integrated accounts of behavioral and neuroimaging data using flexible recurrent neural network models

Neural Information Processing Systems

Neuroscience studies of human decision-making abilities commonly involve subjects completing a decision-making task while BOLD signals are recorded using fMRI. Hypotheses are tested about which brain regions mediate the effect of past experience, such as rewards, on future actions. One standard approach to this is model-based fMRI data analysis, in which a model is fitted to the behavioral data, i.e., a subject's choices, and then the neural data are parsed to find brain regions whose BOLD signals are related to the model's internal signals. However, the internal mechanics of such purely behavioral models are not constrained by the neural data, and therefore might miss or mischaracterize aspects of the brain. To address this limitation, we introduce a new method using recurrent neural network models that are flexible enough to be jointly fitted to the behavioral and neural data. We trained a model so that its internal states were suitably related to neural activity during the task, while at the same time its output predicted the next action a subject would execute. We then used the fitted model to create a novel visualization of the relationship between the activity in brain regions at different times following a reward and the choices the subject subsequently made. Finally, we validated our method using a previously published dataset. We found that the model was able to recover the underlying neural substrates that were discovered by explicit model engineering in the previous work, and also derived new results regarding the temporal pattern of brain activity.


Integrated accounts of behavioral and neuroimaging data using flexible recurrent neural network models

Neural Information Processing Systems

Neuroscience studies of human decision-making abilities commonly involve subjects completing a decision-making task while BOLD signals are recorded using fMRI. Hypotheses are tested about which brain regions mediate the effect of past experience, such as rewards, on future actions. One standard approach to this is model-based fMRI data analysis, in which a model is fitted to the behavioral data, i.e., a subject's choices, and then the neural data are parsed to find brain regions whose BOLD signals are related to the model's internal signals. However, the internal mechanics of such purely behavioral models are not constrained by the neural data, and therefore might miss or mischaracterize aspects of the brain. To address this limitation, we introduce a new method using recurrent neural network models that are flexible enough to be jointly fitted to the behavioral and neural data. We trained a model so that its internal states were suitably related to neural activity during the task, while at the same time its output predicted the next action a subject would execute. We then used the fitted model to create a novel visualization of the relationship between the activity in brain regions at different times following a reward and the choices the subject subsequently made. Finally, we validated our method using a previously published dataset. We found that the model was able to recover the underlying neural substrates that were discovered by explicit model engineering in the previous work, and also derived new results regarding the temporal pattern of brain activity.