Etori, Naome
CVQA: Culturally-diverse Multilingual Visual Question Answering Benchmark
Romero, David, Lyu, Chenyang, Wibowo, Haryo Akbarianto, Lynn, Teresa, Hamed, Injy, Kishore, Aditya Nanda, Mandal, Aishik, Dragonetti, Alina, Abzaliev, Artem, Tonja, Atnafu Lambebo, Balcha, Bontu Fufa, Whitehouse, Chenxi, Salamea, Christian, Velasco, Dan John, Adelani, David Ifeoluwa, Meur, David Le, Villa-Cueva, Emilio, Koto, Fajri, Farooqui, Fauzan, Belcavello, Frederico, Batnasan, Ganzorig, Vallejo, Gisela, Caulfield, Grainne, Ivetta, Guido, Song, Haiyue, Ademtew, Henok Biadglign, Maina, Hernán, Lovenia, Holy, Azime, Israel Abebe, Cruz, Jan Christian Blaise, Gala, Jay, Geng, Jiahui, Ortiz-Barajas, Jesus-German, Baek, Jinheon, Dunstan, Jocelyn, Alemany, Laura Alonso, Nagasinghe, Kumaranage Ravindu Yasas, Benotti, Luciana, D'Haro, Luis Fernando, Viridiano, Marcelo, Estecha-Garitagoitia, Marcos, Cabrera, Maria Camila Buitrago, Rodríguez-Cantelar, Mario, Jouitteau, Mélanie, Mihaylov, Mihail, Imam, Mohamed Fazli Mohamed, Adilazuarda, Muhammad Farid, Gochoo, Munkhjargal, Otgonbold, Munkh-Erdene, Etori, Naome, Niyomugisha, Olivier, Silva, Paula Mónica, Chitale, Pranjal, Dabre, Raj, Chevi, Rendi, Zhang, Ruochen, Diandaru, Ryandito, Cahyawijaya, Samuel, Góngora, Santiago, Jeong, Soyeong, Purkayastha, Sukannya, Kuribayashi, Tatsuki, Jayakumar, Thanmay, Torrent, Tiago Timponi, Ehsan, Toqeer, Araujo, Vladimir, Kementchedjhieva, Yova, Burzo, Zara, Lim, Zheng Wei, Yong, Zheng Xin, Ignat, Oana, Nwatu, Joan, Mihalcea, Rada, Solorio, Thamar, Aji, Alham Fikri
Visual Question Answering (VQA) is an important task in multimodal AI, and it is often used to test the ability of vision-language models to understand and reason on knowledge present in both visual and textual data. However, most of the current VQA models use datasets that are primarily focused on English and a few major world languages, with images that are typically Western-centric. While recent efforts have tried to increase the number of languages covered on VQA datasets, they still lack diversity in low-resource languages. More importantly, although these datasets often extend their linguistic range via translation or some other approaches, they usually keep images the same, resulting in narrow cultural representation. To address these limitations, we construct CVQA, a new Culturally-diverse multilingual Visual Question Answering benchmark, designed to cover a rich set of languages and cultures, where we engage native speakers and cultural experts in the data collection process. As a result, CVQA includes culturally-driven images and questions from across 28 countries on four continents, covering 26 languages with 11 scripts, providing a total of 9k questions. We then benchmark several Multimodal Large Language Models (MLLMs) on CVQA, and show that the dataset is challenging for the current state-of-the-art models. This benchmark can serve as a probing evaluation suite for assessing the cultural capability and bias of multimodal models and hopefully encourage more research efforts toward increasing cultural awareness and linguistic diversity in this field.
AfriSpeech-200: Pan-African Accented Speech Dataset for Clinical and General Domain ASR
Olatunji, Tobi, Afonja, Tejumade, Yadavalli, Aditya, Emezue, Chris Chinenye, Singh, Sahib, Dossou, Bonaventure F. P., Osuchukwu, Joanne, Osei, Salomey, Tonja, Atnafu Lambebo, Etori, Naome, Mbataku, Clinton
Africa has a very low doctor-to-patient ratio. At very busy clinics, doctors could see 30+ patients per day -- a heavy patient burden compared with developed countries -- but productivity tools such as clinical automatic speech recognition (ASR) are lacking for these overworked clinicians. However, clinical ASR is mature, even ubiquitous, in developed nations, and clinician-reported performance of commercial clinical ASR systems is generally satisfactory. Furthermore, the recent performance of general domain ASR is approaching human accuracy. However, several gaps exist. Several publications have highlighted racial bias with speech-to-text algorithms and performance on minority accents lags significantly. To our knowledge, there is no publicly available research or benchmark on accented African clinical ASR, and speech data is non-existent for the majority of African accents. We release AfriSpeech, 200hrs of Pan-African English speech, 67,577 clips from 2,463 unique speakers across 120 indigenous accents from 13 countries for clinical and general domain ASR, a benchmark test set, with publicly available pre-trained models with SOTA performance on the AfriSpeech benchmark.
What We Know So Far: Artificial Intelligence in African Healthcare
Etori, Naome, Temesgen, Ebasa, Gini, Maria
Healthcare in Africa is a complex issue influenced by many factors including poverty, lack of infrastructure, and inadequate funding. However, Artificial intelligence (AI) applied to healthcare, has the potential to transform healthcare in Africa by improving the accuracy and efficiency of diagnosis, enabling earlier detection of diseases, and supporting the delivery of personalized medicine. This paper reviews the current state of how AI Algorithms can be used to improve diagnostics, treatment, and disease monitoring, as well as how AI can be used to improve access to healthcare in Africa as a low-resource setting and discusses some of the critical challenges and opportunities for its adoption. As such, there is a need for a well-coordinated effort by the governments, private sector, healthcare providers, and international organizations to create sustainable AI solutions that meet the unique needs of the African healthcare system.