Etemad, Ali
Some Optimizers are More Equal: Understanding the Role of Optimizers in Group Fairness
Kolahdouzi, Mojtaba, Gunes, Hatice, Etemad, Ali
We study whether and how the choice of optimization algorithm can impact group fairness in deep neural networks. Through stochastic differential equation analysis of optimization dynamics in an analytically tractable setup, we demonstrate that the choice of optimization algorithm indeed influences fairness outcomes, particularly under severe imbalance. Furthermore, we show that when comparing two categories of optimizers, adaptive methods and stochastic methods, RMSProp (from the adaptive category) has a higher likelihood of converging to fairer minima than SGD (from the stochastic category). Building on this insight, we derive two new theoretical guarantees showing that, under appropriate conditions, RMSProp exhibits fairer parameter updates and improved fairness in a single optimization step compared to SGD. We then validate these findings through extensive experiments on three publicly available datasets, namely CelebA, FairFace, and MS-COCO, across different tasks as facial expression recognition, gender classification, and multi-label classification, using various backbones. Considering multiple fairness definitions including equalized odds, equal opportunity, and demographic parity, adaptive optimizers like RMSProp and Adam consistently outperform SGD in terms of group fairness, while maintaining comparable predictive accuracy. Our results highlight the role of adaptive updates as a crucial yet overlooked mechanism for promoting fair outcomes.
Advancing Medical Representation Learning Through High-Quality Data
Baghbanzadeh, Negin, Fallahpour, Adibvafa, Parhizkar, Yasaman, Ogidi, Franklin, Roy, Shuvendu, Ashkezari, Sajad, Khazaie, Vahid Reza, Colacci, Michael, Etemad, Ali, Afkanpour, Arash, Dolatabadi, Elham
Despite the growing scale of medical Vision-Language datasets, the impact of dataset quality on model performance remains under-explored. We introduce Open-PMC, a high-quality medical dataset from PubMed Central, containing 2.2 million image-text pairs, enriched with image modality annotations, subfigures, and summarized in-text references. Notably, the in-text references provide richer medical context, extending beyond the abstract information typically found in captions. Through extensive experiments, we benchmark Open-PMC against larger datasets across retrieval and zero-shot classification tasks. Our results show that dataset quality-not just size-drives significant performance gains. We complement our benchmark with an in-depth analysis of feature representation. Our findings highlight the crucial role of data curation quality in advancing multimodal medical AI. We release Open-PMC, along with the trained models and our codebase.
Task-agnostic Prompt Compression with Context-aware Sentence Embedding and Reward-guided Task Descriptor
Liskavets, Barys, Roy, Shuvendu, Ushakov, Maxim, Klibanov, Mark, Etemad, Ali, Luke, Shane
The rise of Large Language Models (LLMs) has led to significant interest in prompt compression, a technique aimed at reducing the length of input prompts while preserving critical information. However, the prominent approaches in prompt compression often require explicit questions or handcrafted templates for compression, limiting their generalizability. We propose Task-agnostic Prompt Compression (TPC), a novel framework that generalizes compression across tasks and domains without requiring input questions or templates. TPC generates a context-relevant task description using a task descriptor trained on a curated dataset of context and query pairs, and fine-tuned via reinforcement learning with a reward function designed to capture the most relevant information. The task descriptor is then utilized to compute the relevance of each sentence in the prompt to generate the compressed prompt. We introduce 3 model sizes (Base, Large, and Huge), where the largest model outperforms the existing state-of-the-art methods on LongBench and ZeroSCROLLS benchmarks, and our smallest model performs comparable to the existing solutions while being considerably smaller.
Scaling laws in wearable human activity recognition
Hoddes, Tom, Bijamov, Alex, Joshi, Saket, Roggen, Daniel, Etemad, Ali, Harle, Robert, Racz, David
Many deep architectures and self-supervised pre-training techniques have been proposed for human activity recognition (HAR) from wearable multimodal sensors. Scaling laws have the potential to help move towards more principled design by linking model capacity with pre-training data volume. Yet, scaling laws have not been established for HAR to the same extent as in language and vision. By conducting an exhaustive grid search on both amount of pre-training data and Transformer architectures, we establish the first known scaling laws for HAR. We show that pre-training loss scales with a power law relationship to amount of data and parameter count and that increasing the number of users in a dataset results in a steeper improvement in performance than increasing data per user, indicating that diversity of pre-training data is important, which contrasts to some previously reported findings in self-supervised HAR. We show that these scaling laws translate to downstream performance improvements on three HAR benchmark datasets of postures, modes of locomotion and activities of daily living: UCI HAR and WISDM Phone and WISDM Watch. Finally, we suggest some previously published works should be revisited in light of these scaling laws with more adequate model capacities.
Subject Representation Learning from EEG using Graph Convolutional Variational Autoencoders
Mishra, Aditya, Samin, Ahnaf Mozib, Etemad, Ali, Hashemi, Javad
We propose GC-VASE, a graph convolutional-based variational autoencoder that leverages contrastive learning for subject representation learning from EEG data. Our method successfully learns robust subject-specific latent representations using the split-latent space architecture tailored for subject identification. To enhance the model's adaptability to unseen subjects without extensive retraining, we introduce an attention-based adapter network for fine-tuning, which reduces the computational cost of adapting the model to new subjects. Our method significantly outperforms other deep learning approaches, achieving state-of-the-art results with a subject balanced accuracy of 89.81% on the ERP-Core dataset and 70.85% on the SleepEDFx-20 dataset. After subject adaptive fine-tuning using adapters and attention layers, GC-VASE further improves the subject balanced accuracy to 90.31% on ERP-Core. Additionally, we perform a detailed ablation study to highlight the impact of the key components of our method.
Dynamic Prototype Rehearsal for Continual Learning in ECG Arrhythmia Detection
Rahmani, Sana, Chatterjee, Reetam, Etemad, Ali, Hashemi, Javad
Continual Learning (CL) methods aim to learn from a sequence of tasks while avoiding the challenge of forgetting previous knowledge. We present DREAM-CL, a novel CL method for ECG arrhythmia detection that introduces dynamic prototype rehearsal memory. DREAM-CL selects representative prototypes by clustering data based on learning behavior during each training session. Within each cluster, we apply a smooth sorting operation that ranks samples by training difficulty, compressing extreme values and removing outliers. The more challenging samples are then chosen as prototypes for the rehearsal memory, ensuring effective knowledge retention across sessions. We evaluate our method on time-incremental, class-incremental, and lead-incremental scenarios using two widely used ECG arrhythmia datasets, Chapman and PTB-XL. The results demonstrate that DREAM-CL outperforms the state-of-the-art in CL for ECG arrhythmia detection. Detailed ablation and sensitivity studies are performed to validate the different design choices of our method.
Federated Domain Generalization with Label Smoothing and Balanced Decentralized Training
Soltany, Milad, Pourpanah, Farhad, Molahasani, Mahdiyar, Greenspan, Michael, Etemad, Ali
In this paper, we propose a novel approach, Federated Domain Generalization with Label Smoothing and Balanced Decentralized Training (FedSB), to address the challenges of data heterogeneity within a federated learning framework. FedSB utilizes label smoothing at the client level to prevent overfitting to domain-specific features, thereby enhancing generalization capabilities across diverse domains when aggregating local models into a global model. Additionally, FedSB incorporates a decentralized budgeting mechanism which balances training among clients, which is shown to improve the performance of the aggregated global model. Extensive experiments on four commonly used multi-domain datasets, PACS, VLCS, OfficeHome, and TerraInc, demonstrate that FedSB outperforms competing methods, achieving state-of-the-art results on three out of four datasets, indicating the effectiveness of FedSB in addressing data heterogeneity.
Socially-Informed Reconstruction for Pedestrian Trajectory Forecasting
Damirchi, Haleh, Etemad, Ali, Greenspan, Michael
Pedestrian trajectory prediction remains a challenge for autonomous systems, particularly due to the intricate dynamics of social interactions. Accurate forecasting requires a comprehensive understanding not only of each pedestrian's previous trajectory but also of their interaction with the surrounding environment, an important part of which are other pedestrians moving dynamically in the scene. To learn effective socially-informed representations, we propose a model that uses a reconstructor alongside a conditional variational autoencoder-based trajectory forecasting module. This module generates pseudo-trajectories, which we use as augmentations throughout the training process. To further guide the model towards social awareness, we propose a novel social loss that aids in forecasting of more stable trajectories. We validate our approach through extensive experiments, demonstrating strong performances in comparison to state of-the-art methods on the ETH/UCY and SDD benchmarks.
Benchmarking Vision-Language Contrastive Methods for Medical Representation Learning
Roy, Shuvendu, Parhizkar, Yasaman, Ogidi, Franklin, Khazaie, Vahid Reza, Colacci, Michael, Etemad, Ali, Dolatabadi, Elham, Afkanpour, Arash
We perform a comprehensive benchmarking of contrastive frameworks for learning multimodal representations in the medical domain. Through this study, we aim to answer the following research questions: (i) How transferable are general-domain representations to the medical domain? (ii) Is multimodal contrastive training sufficient, or does it benefit from unimodal training as well? (iii) What is the impact of feature granularity on the effectiveness of multimodal medical representation learning? To answer these questions, we investigate eight contrastive learning approaches under identical training setups, and train them on 2.8 million image-text pairs from four datasets, and evaluate them on 25 downstream tasks, including classification (zero-shot and linear probing), image-to-text and text-to-image retrieval, and visual question-answering. Our findings suggest a positive answer to the first question, a negative answer to the second question, and the benefit of learning fine-grained features. Finally, we make our code publicly available.
Segment, Shuffle, and Stitch: A Simple Mechanism for Improving Time-Series Representations
Grover, Shivam, Jalali, Amin, Etemad, Ali
Existing approaches for learning representations of time-series keep the temporal arrangement of the time-steps intact with the presumption that the original order is the most optimal for learning. However, non-adjacent sections of real-world time-series may have strong dependencies. Accordingly we raise the question: Is there an alternative arrangement for time-series which could enable more effective representation learning? To address this, we propose a simple plug-and-play mechanism called Segment, Shuffle, and Stitch (S3) designed to improve time-series representation learning of existing models. S3 works by creating non-overlapping segments from the original sequence and shuffling them in a learned manner that is the most optimal for the task at hand. It then re-attaches the shuffled segments back together and performs a learned weighted sum with the original input to capture both the newly shuffled sequence along with the original sequence. S3 is modular and can be stacked to create various degrees of granularity, and can be added to many forms of neural architectures including CNNs or Transformers with negligible computation overhead. Through extensive experiments on several datasets and state-of-the-art baselines, we show that incorporating S3 results in significant improvements for the tasks of time-series classification and forecasting, improving performance on certain datasets by up to 68\%. We also show that S3 makes the learning more stable with a smoother training loss curve and loss landscape compared to the original baseline. The code is available at https://github.com/shivam-grover/S3-TimeSeries .