Estève, Yannick
Towards Early Prediction of Self-Supervised Speech Model Performance
Whetten, Ryan, Maison, Lucas, Parcollet, Titouan, Dinarelli, Marco, Estève, Yannick
In Self-Supervised Learning (SSL), pre-training and evaluation are resource intensive. In the speech domain, current indicators of the quality of SSL models during pre-training, such as the loss, do not correlate well with downstream performance. Consequently, it is often difficult to gauge the final downstream performance in a cost efficient manner during pre-training. In this work, we propose unsupervised efficient methods that give insights into the quality of the pre-training of SSL speech models, namely, measuring the cluster quality and rank of the embeddings of the SSL model. Results show that measures of cluster quality and rank correlate better with downstream performance than the pre-training loss with only one hour of unlabeled audio, reducing the need for GPU hours and labeled data in SSL model evaluation.
Performance Analysis of Speech Encoders for Low-Resource SLU and ASR in Tunisian Dialect
Mdhaffar, Salima, Elleuch, Haroun, Bougares, Fethi, Estève, Yannick
Speech encoders pretrained through self-supervised learning (SSL) have demonstrated remarkable performance in various downstream tasks, including Spoken Language Understanding (SLU) and Automatic Speech Recognition (ASR). For instance, fine-tuning SSL models for such tasks has shown significant potential, leading to improvements in the SOTA performance across challenging datasets. In contrast to existing research, this paper contributes by comparing the effectiveness of SSL approaches in the context of (i) the low-resource spoken Tunisian Arabic dialect and (ii) its combination with a low-resource SLU and ASR scenario, where only a few semantic annotations are available for fine-tuning. We conduct experiments using many SSL speech encoders on the TARIC-SLU dataset. We use speech encoders that were pre-trained on either monolingual or multilingual speech data. Some of them have also been refined without in-domain nor Tunisian data through multimodal supervised teacher-student paradigm. This study yields numerous significant findings that we are discussing in this paper.
MSP-Podcast SER Challenge 2024: L'antenne du Ventoux Multimodal Self-Supervised Learning for Speech Emotion Recognition
Duret, Jarod, Rouvier, Mickael, Estève, Yannick
In this work, we detail our submission to the 2024 edition of the MSP-Podcast Speech Emotion Recognition (SER) Challenge. This challenge is divided into two distinct tasks: Categorical Emotion Recognition and Emotional Attribute Prediction. We concentrated our efforts on Task 1, which involves the categorical classification of eight emotional states using data from the MSP-Podcast dataset. Our approach employs an ensemble of models, each trained independently and then fused at the score level using a Support Vector Machine (SVM) classifier. The models were trained using various strategies, including Self-Supervised Learning (SSL) fine-tuning across different modalities: speech alone, text alone, and a combined speech and text approach. This joint training methodology aims to enhance the system's ability to accurately classify emotional states. This joint training methodology aims to enhance the system's ability to accurately classify emotional states. Thus, the system obtained F1-macro of 0.35\% on development set.
Investigating Low-Cost LLM Annotation for~Spoken Dialogue Understanding Datasets
Druart, Lucas, Vielzeuf, Valentin, Estève, Yannick
In spoken Task-Oriented Dialogue (TOD) systems, the choice of the semantic representation describing the users' requests is key to a smooth interaction. Indeed, the system uses this representation to reason over a database and its domain knowledge to choose its next action. The dialogue course thus depends on the information provided by this semantic representation. While textual datasets provide fine-grained semantic representations, spoken dialogue datasets fall behind. This paper provides insights into automatic enhancement of spoken dialogue datasets' semantic representations. Our contributions are three fold: (1) assess the relevance of Large Language Model fine-tuning, (2) evaluate the knowledge captured by the produced annotations and (3) highlight semi-automatic annotation implications.
A dual task learning approach to fine-tune a multilingual semantic speech encoder for Spoken Language Understanding
Laperrière, Gaëlle, Ghannay, Sahar, Jabaian, Bassam, Estève, Yannick
Self-Supervised Learning is vastly used to efficiently represent speech for Spoken Language Understanding, gradually replacing conventional approaches. Meanwhile, textual SSL models are proposed to encode language-agnostic semantics. SAMU-XLSR framework employed this semantic information to enrich multilingual speech representations. A recent study investigated SAMU-XLSR in-domain semantic enrichment by specializing it on downstream transcriptions, leading to state-of-the-art results on a challenging SLU task. This study's interest lies in the loss of multilingual performances and lack of specific-semantics training induced by such specialization in close languages without any SLU implication. We also consider SAMU-XLSR's loss of initial cross-lingual abilities due to a separate SLU fine-tuning. Therefore, this paper proposes a dual task learning approach to improve SAMU-XLSR semantic enrichment while considering distant languages for multilingual and language portability experiments.
Sonos Voice Control Bias Assessment Dataset: A Methodology for Demographic Bias Assessment in Voice Assistants
Sekkat, Chloé, Leroy, Fanny, Mdhaffar, Salima, Smith, Blake Perry, Estève, Yannick, Dureau, Joseph, Coucke, Alice
Recent works demonstrate that voice assistants do not perform equally well for everyone, but research on demographic robustness of speech technologies is still scarce. This is mainly due to the rarity of large datasets with controlled demographic tags. This paper introduces the Sonos Voice Control Bias Assessment Dataset, an open dataset composed of voice assistant requests for North American English in the music domain (1, 038 speakers, 166 hours, 170k audio samples, with 9, 040 unique labelled transcripts) with a controlled demographic diversity (gender, age, dialectal region and ethnicity). We also release a statistical demographic bias assessment methodology, at the univariate and multivariate levels, tailored to this specific use case and leveraging spoken language understanding metrics rather than transcription accuracy, which we believe is a better proxy for user experience. To demonstrate the capabilities of this dataset and statistical method to detect demographic bias, we consider a pair of state-of-the-art Automatic Speech Recognition and Spoken Language Understanding models. Results show statistically significant differences in performance across age, dialectal region and ethnicity. Multivariate tests are crucial to shed light on mixed effects between dialectal region, gender and age.
Open Implementation and Study of BEST-RQ for Speech Processing
Whetten, Ryan, Parcollet, Titouan, Dinarelli, Marco, Estève, Yannick
Self-Supervised Learning (SSL) has proven to be useful in various speech tasks. However, these methods are generally very demanding in terms of data, memory, and computational resources. BERT-based Speech pre-Training with Random-projection Quantizer (BEST-RQ), is an SSL method that has shown great performance on Automatic Speech Recognition (ASR) while being simpler than other SSL methods, such as wav2vec 2.0. Despite BEST-RQ's great performance, details are lacking in the original paper, such as the amount of GPU/TPU hours used in pre-training, and there is no official easy-to-use open-source implementation. Furthermore, BEST-RQ has not been evaluated on other downstream tasks aside from ASR and speech translation. In this work, we describe a re-implementation of a Random-projection quantizer and perform a preliminary study with a comparison to wav2vec 2.0 on four downstream tasks. We discuss the details and differences of our implementation. We show that a random projection quantizer can achieve similar downstream performance as wav2vec 2.0 while decreasing training time by over a factor of two.
Is one brick enough to break the wall of spoken dialogue state tracking?
Druart, Lucas, Vielzeuf, Valentin, Estève, Yannick
In Task-Oriented Dialogue (TOD) systems, correctly updating the system's understanding of the user's needs (a.k.a dialogue state tracking) is key to a smooth interaction. Traditionally, TOD systems perform this update in three steps: transcription of the user's utterance, semantic extraction of the key concepts, and contextualization with the previously identified concepts. Such cascade approaches suffer from cascading errors and separate optimization. End-to-End approaches have been proved helpful up to the semantic extraction step. This paper goes one step further paving the path towards completely neural spoken dialogue state tracking by comparing three approaches: (1) a state of the art cascade approach, (2) a locally E2E approach with rule-based contextualization and (3) a completely neural approach.
Enhancing expressivity transfer in textless speech-to-speech translation
Duret, Jarod, O'Brien, Benjamin, Estève, Yannick, Parcollet, Titouan
Textless speech-to-speech translation systems are rapidly advancing, thanks to the integration of self-supervised learning techniques. However, existing state-of-the-art systems fall short when it comes to capturing and transferring expressivity accurately across different languages. Expressivity plays a vital role in conveying emotions, nuances, and cultural subtleties, thereby enhancing communication across diverse languages. To address this issue this study presents a novel method that operates at the discrete speech unit level and leverages multilingual emotion embeddings to capture language-agnostic information. Specifically, we demonstrate how these embeddings can be used to effectively predict the pitch and duration of speech units in the target language. Through objective and subjective experiments conducted on a French-to-English translation task, our findings highlight the superior expressivity transfer achieved by our approach compared to current state-of-the-art systems.
Acoustic and linguistic representations for speech continuous emotion recognition in call center conversations
Macary, Manon, Tahon, Marie, Estève, Yannick, Luzzati, Daniel
The goal of our research is to automatically retrieve the satisfaction and the frustration in real-life call-center conversations. This study focuses an industrial application in which the customer satisfaction is continuously tracked down to improve customer services. To compensate the lack of large annotated emotional databases, we explore the use of pre-trained speech representations as a form of transfer learning towards AlloSat corpus. Moreover, several studies have pointed out that emotion can be detected not only in speech but also in facial trait, in biological response or in textual information. In the context of telephone conversations, we can break down the audio information into acoustic and linguistic by using the speech signal and its transcription. Our experiments confirms the large gain in performance obtained with the use of pre-trained features. Surprisingly, we found that the linguistic content is clearly the major contributor for the prediction of satisfaction and best generalizes to unseen data. Our experiments conclude to the definitive advantage of using CamemBERT representations, however the benefit of the fusion of acoustic and linguistic modalities is not as obvious. With models learnt on individual annotations, we found that fusion approaches are more robust to the subjectivity of the annotation task. This study also tackles the problem of performances variability and intends to estimate this variability from different views: weights initialization, confidence intervals and annotation subjectivity. A deep analysis on the linguistic content investigates interpretable factors able to explain the high contribution of the linguistic modality for this task.