Espy-Wilson, Carol
CPT-Boosted Wav2vec2.0: Towards Noise Robust Speech Recognition for Classroom Environments
Attia, Ahmed Adel, Demszky, Dorottya, Ogunremi, Tolulope, Liu, Jing, Espy-Wilson, Carol
Creating Automatic Speech Recognition (ASR) systems that are robust and resilient to classroom conditions is paramount to the development of AI tools to aid teachers and students. In this work, we study the efficacy of continued pretraining (CPT) in adapting Wav2vec2.0 to the classroom domain. We show that CPT is a powerful tool in that regard and reduces the Word Error Rate (WER) of Wav2vec2.0-based models by upwards of 10%. More specifically, CPT improves the model's robustness to different noises, microphones and classroom conditions.
Continued Pretraining for Domain Adaptation of Wav2vec2.0 in Automatic Speech Recognition for Elementary Math Classroom Settings
Attia, Ahmed Adel, Demszky, Dorottya, Ogunremi, Tolulope, Liu, Jing, Espy-Wilson, Carol
Creating Automatic Speech Recognition (ASR) systems that are robust and resilient to classroom conditions is paramount to the development of AI tools to aid teachers and students. In this work, we study the efficacy of continued pretraining (CPT) in adapting Wav2vec2.0 to the classroom domain. We show that CPT is a powerful tool in that regard and reduces the Word Error Rate (WER) of Wav2vec2.0-based models by upwards of 10%. More specifically, CPT improves the model's robustness to different noises, microphones, classroom conditions as well as classroom demographics. Our CPT models show improved ability to generalize to different demographics unseen in the labeled finetuning data.
Kid-Whisper: Towards Bridging the Performance Gap in Automatic Speech Recognition for Children VS. Adults
Attia, Ahmed Adel, Liu, Jing, Ai, Wei, Demszky, Dorottya, Espy-Wilson, Carol
Recent advancements in Automatic Speech Recognition (ASR) systems, exemplified by Whisper, have demonstrated the potential of these systems to approach human-level performance given sufficient data. However, this progress doesn't readily extend to ASR for children due to the limited availability of suitable child-specific databases and the distinct characteristics of children's speech. A recent study investigated leveraging the My Science Tutor (MyST) children's speech corpus to enhance Whisper's performance in recognizing children's speech. They were able to demonstrate some improvement on a limited testset. This paper builds on these findings by enhancing the utility of the MyST dataset through more efficient data preprocessing. We reduce the Word Error Rate (WER) on the MyST testset 13.93% to 9.11% with Whisper-Small and from 13.23% to 8.61% with Whisper-Medium and show that this improvement can be generalized to unseen datasets. We also highlight important challenges towards improving children's ASR performance. The results showcase the viable and efficient integration of Whisper for effective children's speech recognition.
Improving Speech Inversion Through Self-Supervised Embeddings and Enhanced Tract Variables
Attia, Ahmed Adel, Siriwardena, Yashish M., Espy-Wilson, Carol
The performance of deep learning models depends significantly on their capacity to encode input features efficiently and decode them into meaningful outputs. Better input and output representation has the potential to boost models' performance and generalization. In the context of acoustic-to-articulatory speech inversion (SI) systems, we study the impact of utilizing speech representations acquired via self-supervised learning (SSL) models, such as HuBERT compared to conventional acoustic features. Additionally, we investigate the incorporation of novel tract variables (TVs) through an improved geometric transformation model. By combining these two approaches, we improve the Pearson product-moment correlation (PPMC) scores which evaluate the accuracy of TV estimation of the SI system from 0.7452 to 0.8141, a 6.9% increase. Our findings underscore the profound influence of rich feature representations from SSL models and improved geometric transformations with target TVs on the enhanced functionality of SI systems.
Masked Autoencoders Are Articulatory Learners
Attia, Ahmed Adel, Espy-Wilson, Carol
Articulatory recordings track the positions and motion of different articulators along the vocal tract and are widely used to study speech production and to develop speech technologies such as articulatory based speech synthesizers and speech inversion systems. The University of Wisconsin X-Ray microbeam (XRMB) dataset is one of various datasets that provide articulatory recordings synced with audio recordings. The XRMB articulatory recordings employ pellets placed on a number of articulators which can be tracked by the microbeam. However, a significant portion of the articulatory recordings are mistracked, and have been so far unsuable. In this work, we present a deep learning based approach using Masked Autoencoders to accurately reconstruct the mistracked articulatory recordings for 41 out of 47 speakers of the XRMB dataset. Our model is able to reconstruct articulatory trajectories that closely match ground truth, even when three out of eight articulators are mistracked, and retrieve 3.28 out of 3.4 hours of previously unusable recordings.
Spoken Language Interaction with Robots: Research Issues and Recommendations, Report from the NSF Future Directions Workshop
Marge, Matthew, Espy-Wilson, Carol, Ward, Nigel
With robotics rapidly advancing, more effective human-robot interaction is increasingly needed to realize the full potential of robots for society. While spoken language must be part of the solution, our ability to provide spoken language interaction capabilities is still very limited. The National Science Foundation accordingly convened a workshop, bringing together speech, language, and robotics researchers to discuss what needs to be done. The result is this report, in which we identify key scientific and engineering advances needed. Our recommendations broadly relate to eight general themes. First, meeting human needs requires addressing new challenges in speech technology and user experience design. Second, this requires better models of the social and interactive aspects of language use. Third, for robustness, robots need higher-bandwidth communication with users and better handling of uncertainty, including simultaneous consideration of multiple hypotheses and goals. Fourth, more powerful adaptation methods are needed, to enable robots to communicate in new environments, for new tasks, and with diverse user populations, without extensive re-engineering or the collection of massive training data. Fifth, since robots are embodied, speech should function together with other communication modalities, such as gaze, gesture, posture, and motion. Sixth, since robots operate in complex environments, speech components need access to rich yet efficient representations of what the robot knows about objects, locations, noise sources, the user, and other humans. Seventh, since robots operate in real time, their speech and language processing components must also. Eighth, in addition to more research, we need more work on infrastructure and resources, including shareable software modules and internal interfaces, inexpensive hardware, baseline systems, and diverse corpora.
Semi-supervised and Transfer learning approaches for low resource sentiment classification
Gupta, Rahul, Sahu, Saurabh, Espy-Wilson, Carol, Narayanan, Shrikanth
Sentiment classification involves quantifying the affective reaction of a human to a document, media item or an event. Although researchers have investigated several methods to reliably infer sentiment from lexical, speech and body language cues, training a model with a small set of labeled datasets is still a challenge. For instance, in expanding sentiment analysis to new languages and cultures, it may not always be possible to obtain comprehensive labeled datasets. In this paper, we investigate the application of semi-supervised and transfer learning methods to improve performances on low resource sentiment classification tasks. We experiment with extracting dense feature representations, pre-training and manifold regularization in enhancing the performance of sentiment classification systems. Our goal is a coherent implementation of these methods and we evaluate the gains achieved by these methods in matched setting involving training and testing on a single corpus setting as well as two cross corpora settings. In both the cases, our experiments demonstrate that the proposed methods can significantly enhance the model performance against a purely supervised approach, particularly in cases involving a handful of training data.
Adversarial Auto-encoders for Speech Based Emotion Recognition
Sahu, Saurabh, Gupta, Rahul, Sivaraman, Ganesh, AbdAlmageed, Wael, Espy-Wilson, Carol
Recently, generative adversarial networks and adversarial autoencoders have gained a lot of attention in machine learning community due to their exceptional performance in tasks such as digit classification and face recognition. They map the autoencoder's bottleneck layer output (termed as code vectors) to different noise Probability Distribution Functions (PDFs), that can be further regularized to cluster based on class information. In addition, they also allow a generation of synthetic samples by sampling the code vectors from the mapped PDFs. Inspired by these properties, we investigate the application of adversarial autoencoders to the domain of emotion recognition. Specifically, we conduct experiments on the following two aspects: (i) their ability to encode high dimensional feature vector representations for emotional utterances into a compressed space (with a minimal loss of emotion class discriminability in the compressed space), and (ii) their ability to regenerate synthetic samples in the original feature space, to be later used for purposes such as training emotion recognition classifiers. We demonstrate the promise of adversarial autoencoders with regards to these aspects on the Interactive Emotional Dyadic Motion Capture (IEMOCAP) corpus and present our analysis.