Esposito, Floriana
Mixed Sum-Product Networks: A Deep Architecture for Hybrid Domains
Molina, Alejandro (TU Dortmund) | Vergari, Antonio (University of Bari) | Mauro, Nicola Di (University of Bari) | Natarajan, Sriraam (Indiana University) | Esposito, Floriana (University of Bari) | Kersting, Kristian (TU Darmstadt)
While all kinds of mixed data---from personal data, over panel and scientific data, to public and commercial data---are collected and stored, building probabilistic graphical models for these hybrid domains becomes more difficult. Users spend significant amounts of time in identifying the parametric form of the random variables (Gaussian, Poisson, Logit, etc.) involved and learning the mixed models. To make this difficult task easier, we propose the first trainable probabilistic deep architecture for hybrid domains that features tractable queries. It is based on Sum-Product Networks (SPNs) with piecewise polynomial leaf distributions together with novel nonparametric decomposition and conditioning steps using the Hirschfeld-Gebelein-Renyi Maximum Correlation Coefficient. This relieves the user from deciding a-priori the parametric form of the random variables but is still expressive enough to effectively approximate any distribution and permits efficient learning and inference.Our experiments show that the architecture, called Mixed SPNs, can indeed capture complex distributions across a wide range of hybrid domains.
Sum-Product Autoencoding: Encoding and Decoding Representations Using Sum-Product Networks
Vergari, Antonio (University of Bari) | Peharz, Robert (University of Cambridge) | Mauro, Nicola Di (University of Bari) | Molina, Alejandro (TU Dortmund) | Kersting, Kristian (TU Darmstadt) | Esposito, Floriana (University of Bari)
Sum-Product Networks (SPNs) are a deep probabilistic architecture that up to now has been successfully employed for tractable inference. Here, we extend their scope towards unsupervised representation learning: we encode samples into continuous and categorical embeddings and show that they can also be decoded back into the original input space by leveraging MPE inference. We characterize when this Sum-Product Autoencoding (SPAE) leads to equivalent reconstructions and extend it towards dealing with missing embedding information. Our experimental results on several multi-label classification problems demonstrate that SPAE is competitive with state-of-the-art autoencoder architectures, even if the SPNs were never trained to reconstruct their inputs.
Sum-Product Networks for Hybrid Domains
Molina, Alejandro, Vergari, Antonio, Di Mauro, Nicola, Natarajan, Sriraam, Esposito, Floriana, Kersting, Kristian
While all kinds of mixed data -from personal data, over panel and scientific data, to public and commercial data- are collected and stored, building probabilistic graphical models for these hybrid domains becomes more difficult. Users spend significant amounts of time in identifying the parametric form of the random variables (Gaussian, Poisson, Logit, etc.) involved and learning the mixed models. To make this difficult task easier, we propose the first trainable probabilistic deep architecture for hybrid domains that features tractable queries. It is based on Sum-Product Networks (SPNs) with piecewise polynomial leave distributions together with novel nonparametric decomposition and conditioning steps using the Hirschfeld-Gebelein-R\'enyi Maximum Correlation Coefficient. This relieves the user from deciding a-priori the parametric form of the random variables but is still expressive enough to effectively approximate any continuous distribution and permits efficient learning and inference. Our empirical evidence shows that the architecture, called Mixed SPNs, can indeed capture complex distributions across a wide range of hybrid domains.
Visualizing and Understanding Sum-Product Networks
Vergari, Antonio, Di Mauro, Nicola, Esposito, Floriana
Sum-Product Networks (SPNs) are recently introduced deep tractable probabilistic models by which several kinds of inference queries can be answered exactly and in a tractable time. Up to now, they have been largely used as black box density estimators, assessed only by comparing their likelihood scores only. In this paper we explore and exploit the inner representations learned by SPNs. We do this with a threefold aim: first we want to get a better understanding of the inner workings of SPNs; secondly, we seek additional ways to evaluate one SPN model and compare it against other probabilistic models, providing diagnostic tools to practitioners; lastly, we want to empirically evaluate how good and meaningful the extracted representations are, as in a classic Representation Learning framework. In order to do so we revise their interpretation as deep neural networks and we propose to exploit several visualization techniques on their node activations and network outputs under different types of inference queries. To investigate these models as feature extractors, we plug some SPNs, learned in a greedy unsupervised fashion on image datasets, in supervised classification learning tasks. We extract several embedding types from node activations by filtering nodes by their type, by their associated feature abstraction level and by their scope. In a thorough empirical comparison we prove them to be competitive against those generated from popular feature extractors as Restricted Boltzmann Machines. Finally, we investigate embeddings generated from random probabilistic marginal queries as means to compare other tractable probabilistic models on a common ground, extending our experiments to Mixtures of Trees.
Towards Representation Learning with Tractable Probabilistic Models
Vergari, Antonio, Di Mauro, Nicola, Esposito, Floriana
Probabilistic models learned as density estimators can be exploited in representation learning beside being toolboxes used to answer inference queries only. However, how to extract useful representations highly depends on the particular model involved. We argue that tractable inference, i.e. inference that can be computed in polynomial time, can enable general schemes to extract features from black box models. We plan to investigate how Tractable Probabilistic Models (TPMs) can be exploited to generate embeddings by random query evaluations. We devise two experimental designs to assess and compare different TPMs as feature extractors in an unsupervised representation learning framework. We show some experimental results on standard image datasets by applying such a method to Sum-Product Networks and Mixture of Trees as tractable models generating embeddings.
Language-Constraint Reachability Learning in Probabilistic Graphs
Taranto, Claudio, Di Mauro, Nicola, Esposito, Floriana
The probabilistic graphs framework models the uncertainty inherent in real-world domains by means of probabilistic edges whose value quantifies the likelihood of the edge existence or the strength of the link it represents. The goal of this paper is to provide a learning method to compute the most likely relationship between two nodes in a framework based on probabilistic graphs. In particular, given a probabilistic graph we adopted the language-constraint reachability method to compute the probability of possible interconnections that may exists between two nodes. Each of these connections may be viewed as feature, or a factor, between the two nodes and the corresponding probability as its weight. Each observed link is considered as a positive instance for its corresponding link label. Given the training set of observed links a L2-regularized Logistic Regression has been adopted to learn a model able to predict unobserved link labels. The experiments on a real world collaborative filtering problem proved that the proposed approach achieves better results than that obtained adopting classical methods.
GRASP and path-relinking for Coalition Structure Generation
Di Mauro, Nicola, Basile, Teresa M. A., Ferilli, Stefano, Esposito, Floriana
In Artificial Intelligence with Coalition Structure Generation (CSG) one refers to those cooperative complex problems that require to find an optimal partition, maximising a social welfare, of a set of entities involved in a system into exhaustive and disjoint coalitions. The solution of the CSG problem finds applications in many fields such as Machine Learning (covering machines, clustering), Data Mining (decision tree, discretization), Graph Theory, Natural Language Processing (aggregation), Semantic Web (service composition), and Bioinformatics. The problem of finding the optimal coalition structure is NP-complete. In this paper we present a greedy adaptive search procedure (GRASP) with path-relinking to efficiently search the space of coalition structures. Experiments and comparisons to other algorithms prove the validity of the proposed method in solving this hard combinatorial problem.
Feature Construction for Relational Sequence Learning
Di Mauro, Nicola, Basile, Teresa M. A., Ferilli, Stefano, Esposito, Floriana
We tackle the problem of multi-class relational sequence learning using relevant patterns discovered from a set of labelled sequences. To deal with this problem, firstly each relational sequence is mapped into a feature vector using the result of a feature construction method. Since, the efficacy of sequence learning algorithms strongly depends on the features used to represent the sequences, the second step is to find an optimal subset of the constructed features leading to high classification accuracy. This feature selection task has been solved adopting a wrapper approach that uses a stochastic local search algorithm embedding a naive Bayes classifier. The performance of the proposed method applied to a real-world dataset shows an improvement when compared to other established methods, such as hidden Markov models, Fisher kernels and conditional random fields for relational sequences.