Goto

Collaborating Authors

 Esmaeili, Ashkan


LSDAT: Low-Rank and Sparse Decomposition for Decision-based Adversarial Attack

arXiv.org Machine Learning

We propose LSDAT, an image-agnostic decision-based black-box attack that exploits low-rank and sparse decomposition (LSD) to dramatically reduce the number of queries and achieve superior fooling rates compared to the state-of-the-art decision-based methods under given imperceptibility constraints. LSDAT crafts perturbations in the low-dimensional subspace formed by the sparse component of the input sample and that of an adversarial sample to obtain query-efficiency. The specific perturbation of interest is obtained by traversing the path between the input and adversarial sparse components. It is set forth that the proposed sparse perturbation is the most aligned sparse perturbation with the shortest path from the input sample to the decision boundary for some initial adversarial sample (the best sparse approximation of shortest path, likely to fool the model). Theoretical analyses are provided to justify the functionality of LSDAT. Unlike other dimensionality reduction based techniques aimed at improving query efficiency (e.g, ones based on FFT), LSD works directly in the image pixel domain to guarantee that non-$\ell_2$ constraints, such as sparsity, are satisfied. LSD offers better control over the number of queries and provides computational efficiency as it performs sparse decomposition of the input and adversarial images only once to generate all queries. We demonstrate $\ell_0$, $\ell_2$ and $\ell_\infty$ bounded attacks with LSDAT to evince its efficiency compared to baseline decision-based attacks in diverse low-query budget scenarios as outlined in the experiments.


A Novel Approach to Sparse Inverse Covariance Estimation Using Transform Domain Updates and Exponentially Adaptive Thresholding

arXiv.org Machine Learning

Sparse Inverse Covariance Estimation (SICE) is useful in many practical data analyses. Recovering the connectivity, non-connectivity graph of covariates is classified amongst the most important data mining and learning problems. In this paper, we introduce a novel SICE approach using adaptive thresholding. Our method is based on updates in a transformed domain of the desired matrix and exponentially decaying adaptive thresholding in the main domain (Inverse Covariance matrix domain). In addition to the proposed algorithm, the convergence analysis is also provided. In the Numerical Experiments Section, we show that the proposed method outperforms state-of-the-art methods in terms of accuracy.


A Novel Approach to Quantized Matrix Completion Using Huber Loss Measure

arXiv.org Machine Learning

In this paper, we introduce a novel and robust approach to Quantized Matrix Completion (QMC). First, we propose a rank minimization problem with constraints induced by quantization bounds. Next, we form an unconstrained optimization problem by regularizing the rank function with Huber loss. Huber loss is leveraged to control the violation from quantization bounds due to two properties: 1- It is differentiable, 2- It is less sensitive to outliers than the quadratic loss. A Smooth Rank Approximation is utilized to endorse lower rank on the genuine data matrix. Thus, an unconstrained optimization problem with differentiable objective function is obtained allowing us to advantage from Gradient Descent (GD) technique. Novel and firm theoretical analysis on problem model and convergence of our algorithm to the global solution are provided. Another contribution of our work is that our method does not require projections or initial rank estimation unlike the state- of-the-art. In the Numerical Experiments Section, the noticeable outperformance of our proposed method in learning accuracy and computational complexity compared to those of the state-of- the-art literature methods is illustrated as the main contribution.


Recovering Quantized Data with Missing Information Using Bilinear Factorization and Augmented Lagrangian Method

arXiv.org Machine Learning

In this paper, we propose a novel approach in order to recover a quantized matrix with missing information. We propose a regularized convex cost function composed of a log-likelihood term and a Trace norm term. The Bi-factorization approach and the Augmented Lagrangian Method (ALM) are applied to find the global minimizer of the cost function in order to recover the genuine data. We provide mathematical convergence analysis for our proposed algorithm. In the Numerical Experiments Section, we show the superiority of our method in accuracy and also its robustness in computational complexity compared to the state-of-the-art literature methods.


Transduction with Matrix Completion Using Smoothed Rank Function

arXiv.org Machine Learning

In this paper, we propose two new algorithms for transduction with Matrix Completion (MC) problem. The joint MC and prediction tasks are addressed simultaneously to enhance the accuracy, i.e., the label matrix is concatenated to the data matrix forming a stacked matrix. Assuming the data matrix is of low rank, we propose new recommendation methods by posing the problem as a constrained minimization of the Smoothed Rank Function (SRF). We provide convergence analysis for the proposed algorithms. The simulations are conducted on real datasets in two different scenarios of randomly missing pattern with and without block loss. The results confirm that the accuracy of our proposed methods outperforms those of state-of-the-art methods even up to 10% in low observation rates for the scenario without block loss. Our accuracy in the latter scenario, is comparable to state-of-the-art methods while the complexity of the proposed algorithms are reduced up to 4 times.


Using Empirical Covariance Matrix in Enhancing Prediction Accuracy of Linear Models with Missing Information

arXiv.org Machine Learning

Inference and Estimation in Missing Information (MI) scenarios are important topics in Statistical Learning Theory and Machine Learning (ML). In ML literature, attempts have been made to enhance prediction through precise feature selection methods. In sparse linear models, LASSO is well-known in extracting the desired support of the signal and resisting against noisy systems. When sparse models are also suffering from MI, the sparse recovery and inference of the missing models are taken into account simultaneously. In this paper, we will introduce an approach which enjoys sparse regression and covariance matrix estimation to improve matrix completion accuracy, and as a result enhancing feature selection preciseness which leads to reduction in prediction Mean Squared Error (MSE). We will compare the effect of employing covariance matrix in enhancing estimation accuracy to the case it is not used in feature selection. Simulations show the improvement in the performance as compared to the case where the covariance matrix estimation is not used.


New Methods of Enhancing Prediction Accuracy in Linear Models with Missing Data

arXiv.org Machine Learning

In this paper, prediction for linear systems with missing information is investigated. New methods are introduced to improve the Mean Squared Error (MSE) on the test set in comparison to state-of-the-art methods, through appropriate tuning of Bias-Variance trade-off. First, the use of proposed Soft Weighted Prediction (SWP) algorithm and its efficacy are depicted and compared to previous works for non-missing scenarios. The algorithm is then modified and optimized for missing scenarios. It is shown that controlled over-fitting by suggested algorithms will improve prediction accuracy in various cases. Simulation results approve our heuristics in enhancing the prediction accuracy.


Fast Methods for Recovering Sparse Parameters in Linear Low Rank Models

arXiv.org Machine Learning

In this paper, we investigate the recovery of a sparse weight vector (parameters vector) from a set of noisy linear combinations. However, only partial information about the matrix representing the linear combinations is available. Assuming a low-rank structure for the matrix, one natural solution would be to first apply a matrix completion on the data, and then to solve the resulting compressed sensing problem. In big data applications such as massive MIMO and medical data, the matrix completion step imposes a huge computational burden. Here, we propose to reduce the computational cost of the completion task by ignoring the columns corresponding to zero elements in the sparse vector. To this end, we employ a technique to initially approximate the support of the sparse vector. We further propose to unify the partial matrix completion and sparse vector recovery into an augmented four-step problem. Simulation results reveal that the augmented approach achieves the best performance, while both proposed methods outperform the natural two-step technique with substantially less computational requirements.


Comparison of Several Sparse Recovery Methods for Low Rank Matrices with Random Samples

arXiv.org Machine Learning

In this paper, we will investigate the efficacy of IMAT (Iterative Method of Adaptive Thresholding) in recovering the sparse signal (parameters) for linear models with missing data. Sparse recovery rises in compressed sensing and machine learning problems and has various applications necessitating viable reconstruction methods specifically when we work with big data. This paper will focus on comparing the power of IMAT in reconstruction of the desired sparse signal with LASSO. Additionally, we will assume the model has random missing information. Missing data has been recently of interest in big data and machine learning problems since they appear in many cases including but not limited to medical imaging datasets, hospital datasets, and massive MIMO. The dominance of IMAT over the well-known LASSO will be taken into account in different scenarios. Simulations and numerical results are also provided to verify the arguments.