Goto

Collaborating Authors

 Eshratifar, Amir Erfan


SCOT: Self-Supervised Contrastive Pretraining For Zero-Shot Compositional Retrieval

arXiv.org Artificial Intelligence

Compositional image retrieval (CIR) is a multimodal learning task where a model combines a query image with a user-provided text modification to retrieve a target image. CIR finds applications in a variety of domains including product retrieval (e-commerce) and web search. Existing methods primarily focus on fully-supervised learning, wherein models are trained on datasets of labeled triplets such as FashionIQ and CIRR. This poses two significant challenges: (i) curating such triplet datasets is labor intensive; and (ii) models lack generalization to unseen objects and domains. In this work, we propose SCOT (Self-supervised COmpositional Training), a novel zero-shot compositional pretraining strategy that combines existing large image-text pair datasets with the generative capabilities of large language models to contrastively train an embedding composition network. Specifically, we show that the text embedding from a large-scale contrastively-pretrained vision-language model can be utilized as proxy target supervision during compositional pretraining, replacing the target image embedding. In zero-shot settings, this strategy surpasses SOTA zero-shot compositional retrieval methods as well as many fully-supervised methods on standard benchmarks such as FashionIQ and CIRR.


Salient Object-Aware Background Generation using Text-Guided Diffusion Models

arXiv.org Artificial Intelligence

Generating background scenes for salient objects plays a crucial role across various domains including creative design and e-commerce, as it enhances the presentation and context of subjects by integrating them into tailored environments. Background generation can be framed as a task of text-conditioned outpainting, where the goal is to extend image content beyond a salient object's boundaries on a blank background. Although popular diffusion models for text-guided inpainting can also be used for outpainting by mask inversion, they are trained to fill in missing parts of an image rather than to place an object into a scene. Consequently, when used for background creation, inpainting models frequently extend the salient object's boundaries and thereby change the object's identity, which is a phenomenon we call "object expansion." This paper introduces a model for adapting inpainting diffusion models to the salient object outpainting task using Stable Diffusion and ControlNet architectures. We present a series of qualitative and quantitative results across models and datasets, including a newly proposed metric to measure object expansion that does not require any human labeling. Compared to Stable Diffusion 2.0 Inpainting, our proposed approach reduces object expansion by 3.6x on average with no degradation in standard visual metrics across multiple datasets.


Gradient Agreement as an Optimization Objective for Meta-Learning

arXiv.org Machine Learning

This paper presents a novel optimization method for maximizing generalization over tasks in meta-learning. The goal of meta-learning is to learn a model for an agent adapting rapidly when presented with previously unseen tasks. Tasks are sampled from a specific distribution which is assumed to be similar for both seen and unseen tasks. We focus on a family of meta-learning methods learning initial parameters of a base model which can be fine-tuned quickly on a new task, by few gradient steps (MAML). Our approach is based on pushing the parameters of the model to a direction in which tasks have more agreement upon. If the gradients of a task agree with the parameters update vector, then their inner product will be a large positive value. As a result, given a batch of tasks to be optimized for, we associate a positive (negative) weight to the loss function of a task, if the inner product between its gradients and the average of the gradients of all tasks in the batch is a positive (negative) value. Therefore, the degree of the contribution of a task to the parameter updates is controlled by introducing a set of weights on the loss function of the tasks. Our method can be easily integrated with the current meta-learning algorithms for neural networks. Our experiments demonstrate that it yields models with better generalization compared to MAML and Reptile.


A Meta-Learning Approach for Custom Model Training

arXiv.org Artificial Intelligence

Transfer-learning and meta-learning are two effective methods to apply knowledge learned from large data sources to new tasks. In few-class, few-shot target task settings (i.e. when there are only a few classes and training examples available in the target task), meta-learning approaches that optimize for future task learning have outperformed the typical transfer approach of initializing model weights from a pre-trained starting point. But as we experimentally show, meta-learning algorithms that work well in the few-class setting do not generalize well in many-shot and many-class cases. In this paper, we propose a joint training approach that combines both transfer-learning and meta-learning. Benefiting from the advantages of each, our method obtains improved generalization performance on unseen target tasks in both few- and many-class and few- and many-shot scenarios.