Goto

Collaborating Authors

 Erichson, N. Benjamin


Powerformer: A Transformer with Weighted Causal Attention for Time-series Forecasting

arXiv.org Machine Learning

Transformers have recently shown strong performance in time-series forecasting, but their all-to-all attention mechanism overlooks the (temporal) causal and often (temporally) local nature of data. We introduce Powerformer, a novel Transformer variant that replaces noncausal attention weights with causal weights that are reweighted according to a smooth heavy-tailed decay. This simple yet effective modification endows the model with an inductive bias favoring temporally local dependencies, while still allowing sufficient flexibility to learn the unique correlation structure of each dataset. Our empirical results demonstrate that Powerformer not only achieves state-of-the-art accuracy on public time-series benchmarks, but also that it offers improved interpretability of attention patterns. Our analyses show that the model's locality bias is amplified during training, demonstrating an interplay between time-series data and power-law-based attention. These findings highlight the importance of domain-specific modifications to the Transformer architecture for time-series forecasting, and they establish Powerformer as a strong, efficient, and principled baseline for future research and real-world applications.


A Deep State Space Model for Rainfall-Runoff Simulations

arXiv.org Artificial Intelligence

The rainfall-runoff relationship is a fundamental concept in hydrology. It describes how rainfall is transformed into surface runoff through interconnected hydrologic processes, such as infiltration, evapotranspiration, and the exchange of water between surface and subsurface flows (Beven & Kirkby, 1979). Thoroughly understanding these hydrologic processes and subsequently achieving accurate simulations of the rainfall-runoff relationship are critical for proactive flood forecasting and mitigation, efficient agricultural planning, and strategic urban development (Beven, 2012; Knapp et al., 1991; Moradkhani & Sorooshian, 2008). Physically-based hydrologic models (PBMs), grounded in physical laws that govern hydrologic dynamics, are the standard tools for simulating rainfall-runoff relationships (Beven, 1996). However, the highly nonlinear nature of various hydrologic processes often challenges PBMs, limiting their accuracy in diverse conditions (Beven, 1989; Clark et al., 2017). Consequently, there is a growing need for innovative approaches to address the limitations of PBMs. Deep learning (DL) has emerged as an alternative to PBMs, showing success in capturing the complex, nonlinear patterns in rainfall-runoff simulations. The hydrology community also explores the applicability of DL models in rainfall-runoff simulations across diverse temporal scales and geospatial locations.


Emoji Attack: A Method for Misleading Judge LLMs in Safety Risk Detection

arXiv.org Artificial Intelligence

Jailbreaking attacks show how Large Language Models (LLMs) can be tricked into generating harmful outputs using malicious prompts. To prevent these attacks, other LLMs are often used as judges to evaluate the harmfulness of the generated content. However, relying on LLMs as judges can introduce biases into the detection process, which in turn compromises the effectiveness of the evaluation. In this paper, we show that Judge LLMs, like other LLMs, are also affected by token segmentation bias. This bias occurs when tokens are split into smaller sub-tokens, altering their embeddings. This makes it harder for the model to detect harmful content. Specifically, this bias can cause sub-tokens to differ significantly from the original token in the embedding space, leading to incorrect "safe" predictions for harmful content. To exploit this bias in Judge LLMs, we introduce the Emoji Attack -- a method that places emojis within tokens to increase the embedding differences between sub-tokens and their originals. These emojis create new tokens that further distort the token embeddings, exacerbating the bias. To counter the Emoji Attack, we design prompts that help LLMs filter out unusual characters. However, this defense can still be bypassed by using a mix of emojis and other characters. The Emoji Attack can also be combined with existing jailbreaking prompts using few-shot learning, which enables LLMs to generate harmful responses with emojis. These responses are often mistakenly labeled as "safe" by Judge LLMs, allowing the attack to slip through. Our experiments with six state-of-the-art Judge LLMs show that the Emoji Attack allows 25\% of harmful responses to bypass detection by Llama Guard and Llama Guard 2, and up to 75\% by ShieldLM. These results highlight the need for stronger Judge LLMs to address this vulnerability.


Elucidating the Design Choice of Probability Paths in Flow Matching for Forecasting

arXiv.org Machine Learning

Flow matching has recently emerged as a powerful paradigm for generative modeling and has been extended to probabilistic time series forecasting in latent spaces. However, the impact of the specific choice of probability path model on forecasting performance remains under-explored. In this work, we demonstrate that forecasting spatio-temporal data with flow matching is highly sensitive to the selection of the probability path model. Motivated by this insight, we propose a novel probability path model designed to improve forecasting performance. Our empirical results across various dynamical system benchmarks show that our model achieves faster convergence during training and improved predictive performance compared to existing probability path models. Importantly, our approach is efficient during inference, requiring only a few sampling steps. This makes our proposed model practical for real-world applications and opens new avenues for probabilistic forecasting.


Tuning Frequency Bias of State Space Models

arXiv.org Machine Learning

State space models (SSMs) leverage linear, time-invariant (LTI) systems to effectively learn sequences with long-range dependencies. By analyzing the transfer functions of LTI systems, we find that SSMs exhibit an implicit bias toward capturing low-frequency components more effectively than high-frequency ones. This behavior aligns with the broader notion of frequency bias in deep learning model training. We show that the initialization of an SSM assigns it an innate frequency bias and that training the model in a conventional way does not alter this bias. Based on our theory, we propose two mechanisms to tune frequency bias: either by scaling the initialization to tune the inborn frequency bias; or by applying a Sobolev-norm-based filter to adjust the sensitivity of the gradients to high-frequency inputs, which allows us to change the frequency bias via training. Using an image-denoising task, we empirically show that we can strengthen, weaken, or even reverse the frequency bias using both mechanisms. By tuning the frequency bias, we can also improve SSMs' performance on learning long-range sequences, averaging an 88.26% accuracy on the Long-Range Arena (LRA) benchmark tasks.


WaveCastNet: An AI-enabled Wavefield Forecasting Framework for Earthquake Early Warning

arXiv.org Artificial Intelligence

Large earthquakes can be destructive and quickly wreak havoc on a landscape. To mitigate immediate threats, early warning systems have been developed to alert residents, emergency responders, and critical infrastructure operators seconds to a minute before seismic waves arrive. These warnings provide time to take precautions and prevent damage. The success of these systems relies on fast, accurate predictions of ground motion intensities, which is challenging due to the complex physics of earthquakes, wave propagation, and their intricate spatial and temporal interactions. To improve early warning, we propose a novel AI-enabled framework, WaveCastNet, for forecasting ground motions from large earthquakes. WaveCastNet integrates a novel convolutional Long Expressive Memory (ConvLEM) model into a sequence to sequence (seq2seq) forecasting framework to model long-term dependencies and multi-scale patterns in both space and time. WaveCastNet, which shares weights across spatial and temporal dimensions, requires fewer parameters compared to more resource-intensive models like transformers and thus, in turn, reduces inference times. Importantly, WaveCastNet also generalizes better than transformer-based models to different seismic scenarios, including to more rare and critical situations with higher magnitude earthquakes. Our results using simulated data from the San Francisco Bay Area demonstrate the capability to rapidly predict the intensity and timing of destructive ground motions. Importantly, our proposed approach does not require estimating earthquake magnitudes and epicenters, which are prone to errors using conventional approaches; nor does it require empirical ground motion models, which fail to capture strongly heterogeneous wave propagation effects.


There is HOPE to Avoid HiPPOs for Long-memory State Space Models

arXiv.org Machine Learning

State-space models (SSMs) that utilize linear, time-invariant (LTI) systems are known for their effectiveness in learning long sequences. However, these models typically face several challenges: (i) they require specifically designed initializations of the system matrices to achieve state-of-the-art performance, (ii) they require training of state matrices on a logarithmic scale with very small learning rates to prevent instabilities, and (iii) they require the model to have exponentially decaying memory in order to ensure an asymptotically stable LTI system. To address these issues, we view SSMs through the lens of Hankel operator theory, which provides us with a unified theory for the initialization and training of SSMs. Building on this theory, we develop a new parameterization scheme, called HOPE, for LTI systems that utilizes Markov parameters within Hankel operators. This approach allows for random initializations of the LTI systems and helps to improve training stability, while also provides the SSMs with non-decaying memory capabilities. Our model efficiently implements these innovations by nonuniformly sampling the transfer functions of LTI systems, and it requires fewer parameters compared to canonical SSMs. When benchmarked against HiPPO-initialized models such as S4 and S4D, an SSM parameterized by Hankel operators demonstrates improved performance on Long-Range Arena (LRA) tasks. Moreover, we use a sequential CIFAR-10 task with padded noise to empirically corroborate our SSM's long memory capacity.


Learning continuous models for continuous physics

arXiv.org Artificial Intelligence

Dynamical systems that evolve continuously over time are ubiquitous throughout science and engineering. Machine learning (ML) provides data-driven approaches to model and predict the dynamics of such systems. A core issue with this approach is that ML models are typically trained on discrete data, using ML methodologies that are not aware of underlying continuity properties. This results in models that often do not capture any underlying continuous dynamics -- either of the system of interest, or indeed of any related system. To address this challenge, we develop a convergence test based on numerical analysis theory. Our test verifies whether a model has learned a function that accurately approximates an underlying continuous dynamics. Models that fail this test fail to capture relevant dynamics, rendering them of limited utility for many scientific prediction tasks; while models that pass this test enable both better interpolation and better extrapolation in multiple ways. Our results illustrate how principled numerical analysis methods can be coupled with existing ML training/testing methodologies to validate models for science and engineering applications.


Generative Modeling of Regular and Irregular Time Series Data via Koopman VAEs

arXiv.org Artificial Intelligence

Generating realistic time series data is important for many engineering and scientific applications. Existing work tackles this problem using generative adversarial networks (GANs). However, GANs are often unstable during training, and they can suffer from mode collapse. While variational autoencoders (VAEs) are known to be more robust to these issues, they are (surprisingly) less often considered for time series generation. In this work, we introduce Koopman VAE (KVAE), a new generative framework that is based on a novel design for the model prior, and that can be optimized for either regular and irregular training data. Inspired by Koopman theory, we represent the latent conditional prior dynamics using a linear map. Our approach enhances generative modeling with two desired features: (i) incorporating domain knowledge can be achieved by leverageing spectral tools that prescribe constraints on the eigenvalues of the linear map; and (ii) studying the qualitative behavior and stablity of the system can be performed using tools from dynamical systems theory. Our results show that KVAE outperforms state-of-the-art GAN and VAE methods across several challenging synthetic and real-world time series generation benchmarks. Whether trained on regular or irregular data, KVAE generates time series that improve both discriminative and predictive metrics. We also present visual evidence suggesting that KVAE learns probability density functions that better approximate empirical ground truth distributions.


Robustifying State-space Models for Long Sequences via Approximate Diagonalization

arXiv.org Machine Learning

State-space models (SSMs) have recently emerged as a framework for learning long-range sequence tasks. An example is the structured state-space sequence (S4) layer, which uses the diagonal-plus-low-rank structure of the HiPPO initialization framework. However, the complicated structure of the S4 layer poses challenges; and, in an effort to address these challenges, models such as S4D and S5 have considered a purely diagonal structure. This choice simplifies the implementation, improves computational efficiency, and allows channel communication. However, diagonalizing the HiPPO framework is itself an ill-posed problem. In this paper, we propose a general solution for this and related ill-posed diagonalization problems in machine learning. We introduce a generic, backward-stable "perturb-then-diagonalize" (PTD) methodology, which is based on the pseudospectral theory of non-normal operators, and which may be interpreted as the approximate diagonalization of the non-normal matrices defining SSMs. Based on this, we introduce the S4-PTD and S5-PTD models. Through theoretical analysis of the transfer functions of different initialization schemes, we demonstrate that the S4-PTD/S5-PTD initialization strongly converges to the HiPPO framework, while the S4D/S5 initialization only achieves weak convergences. As a result, our new models show resilience to Fourier-mode noise-perturbed inputs, a crucial property not achieved by the S4D/S5 models. In addition to improved robustness, our S5-PTD model averages 87.6% accuracy on the Long-Range Arena benchmark, demonstrating that the PTD methodology helps to improve the accuracy of deep learning models.