Eric Eaton
Lifelong Inverse Reinforcement Learning
Jorge Mendez, Shashank Shivkumar, Eric Eaton
Methods for learning from demonstration (LfD) have shown success in acquiring behavior policies by imitating a user. However, even for a single task, LfD may require numerous demonstrations. For versatile agents that must learn many tasks via demonstration, this process would substantially burden the user if each task were learned in isolation. To address this challenge, we introduce the novel problem of lifelong learning from demonstration, which allows the agent to continually build upon knowledge learned from previously demonstrated tasks to accelerate the learning of new tasks, reducing the amount of demonstrations required. As one solution to this problem, we propose the first lifelong learning approach to inverse reinforcement learning, which learns consecutive tasks via demonstration, continually transferring knowledge between tasks to improve performance.
Transfer Learning via Minimizing the Performance Gap Between Domains
Boyu Wang, Jorge Mendez, Mingbo Cai, Eric Eaton
We propose a new principle for transfer learning, based on a straightforward intuition: if two domains are similar to each other, the model trained on one domain should also perform well on the other domain, and vice versa. To formalize this intuition, we define the performance gap as a measure of the discrepancy between the source and target domains. We derive generalization bounds for the instance weighting approach to transfer learning, showing that the performance gap can be viewed as an algorithm-dependent regularizer, which controls the model complexity. Our theoretical analysis provides new insight into transfer learning and motivates a set of general, principled rules for designing new instance weighting schemes for transfer learning. These rules lead to gapBoost, a novel and principled boosting approach for transfer learning. Our experimental evaluation on benchmark data sets shows that gapBoost significantly outperforms previous boosting-based transfer learning algorithms.