Ergenç, Doğanalp
Incentive-based Platoon Formation: Optimizing the Personal Benefit for Drivers
Heinovski, Julian, Ergenç, Doğanalp, Thommes, Kirsten, Dressler, Falko
Platooning or cooperative adaptive cruise control (CACC) has been investigated for decades, but debate about its lasting impact is still ongoing. Even though platooning benefits and platoon formation are rather well understood for trucks, this is less clear for passenger cars, which have a higher heterogeneity in trips and drivers' preferences. Most importantly, it remains unclear how to form platoons of passenger cars in order to optimize the personal benefit for the individual driver. To this end, in this paper, we propose a novel platoon formation algorithm that optimizes the personal benefit for drivers of individual passenger cars. For computing vehicle-to-platoon assignments, the algorithm utilizes a new metric that we propose to evaluate the personal benefits of various driving systems, including platooning. By combining fuel and travel time costs into a single monetary value, drivers can estimate overall trip costs according to a personal monetary value for time spent. This provides an intuitive way for drivers to understand and compare the benefits of driving systems like human driving, adaptive cruise control (ACC), and, of course, platooning. Unlike previous similarity-based methods, our proposed algorithm forms platoons only when beneficial for the driver, rather than for the sake of platooning only. Results of a large-scale simulation study demonstrate that our proposed algorithm outperforms normal ACC as well as previous similarity-based platooning approaches by balancing fuel savings and travel time, independent of traffic and drivers' time cost.
Towards Synthesizing Datasets for IEEE 802.1 Time-sensitive Networking
Ergenç, Doğanalp, Bülbül, Nurefşan Sertbaş, Maile, Lisa, Arestova, Anna, Fischer, Mathias
IEEE 802.1 Time-sensitive Networking (TSN) protocols have recently been proposed to replace legacy networking technologies across different mission-critical systems (MCSs). Design, configuration, and maintenance of TSN within MCSs require advanced methods to tackle the highly complex and interconnected nature of those systems. Accordingly, artificial intelligence (AI) and machine learning (ML) models are the most prominent enablers to develop such methods. However, they usually require a significant amount of data for model training, which is not easily accessible. This short paper aims to recapitulate the need for TSN datasets to flourish research on AI/ML-based techniques for TSN systems. Moreover, it analyzes the main requirements and alternative designs to build a TSN platform to synthesize realistic datasets.